
Summary
Overview:

Rose City Robotics (RCR), in collaboration with Portland State University (PSU), proposes a

novel approach to robotic automation for electric vehicle (EV) battery disassembly. The project

introduces an artificial intelligence (AI) system that leverages vision based sensing and information

pursuit (IP) to address limitations in robotic adaptability, e!ciency, and interpretability. IP actively

updates a posterior distribution over the state (e.g. location and orientation) of target objects, such

as bolts in EV battery packs. By selecting camera views that reduce the entropy of this posterior,

the robot e!ciently resolves uncertainty in real time. This enables fast, accurate localization and

a transparent, continuously updated internal state that can be monitored by a human operator,

crucial for safety critical, variable disassembly tasks.

At the heart of the project is an explainable generative AI system that builds and explores

a learned embedding space: an abstract, low-dimensional representation of sensor data capturing

task relevant features. This embedding allows robots to reason about complex environments us-

ing probabilistic models, reducing dependence on large datasets and rigid programming. Domain

knowledge from drawings, documentation, and human behavior will inform a prior distribution that

guides inference and accelerates convergence. RCR and PSU leverage this new level of intelligence

to create truly adaptive machine perception.

The immediate application is a robotic work cell for EV battery disassembly, a task currently

limited by manual labor due to varied battery designs. RCR’s solution reduces safety risks, lowers

costs, and improves recovery of critical minerals, strengthening U.S. supply chain resilience.

This project advances NSF goals by pushing the boundaries of AI, robotics, and probabilistic

decision making while promoting innovation and workforce development in real world manufactur-

ing.

Intellectual merit:

We propose to create an understandable and trustworthy system for robotic sensing that uses IP

as a decision making layer on top of modern generative AI embeddings. While the IP algorithm

was first presented about thirty years ago, it is still a technical challenge to implement it into

a useful robotic system. However, recent progress in designing embeddings of data streams and

distributions, Bayesian statistics, and generative models, provide new opportunities that will be

exploited extensively during the time period of this grant. By the end of the project, we will create

a real time demonstration of a robotic system driven by the IP algorithm, allowing it to locate the

position and orientation of an object of interest using vision information only, while being robust

to changes in the environment.

Broader impacts:

RCR is developing an intelligent robotic system for disassembling end-of-life batteries to secure

America’s mineral supply chains and strengthen national defense capabilities. As global threats

and foreign dependencies jeopardize access to critical materials like lithium, cobalt, and nickel,

RCR’s autonomous systems provide a domestic solution to reclaim these strategic resources and

repatriate supply chains. In partnership with PSU and national laboratories, RCR is advancing

U.S. competitiveness through hands-on workforce training, applied research, and broad deployment

of modular, American built systems for critical mineral recovery. This initiative anchors industrial

jobs on U.S. soil, promotes ethical and explainable AI, and ensures automation enhances, not

replaces, skilled labor in high risk environments.
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Project Description

1 Intellectual merit

1.1 Advances in artificial intelligence (AI) for robotics. Pixel-to-action research has gained mo-
mentum in both academic and commercial robotics communities. Recent breakthroughs in generative AI,
particularly transformer neural networks (TNNs) [74], have enabled robots to learn complex bimanual
manipulation tasks from human demonstrations, outperforming traditional programming approaches. The
ALOHA project at Stanford [20, 83] exemplifies this trend, showing that neural networks can learn adaptable
motion control from video and joint data [72]. Notably, Professor Chelsea Finn, the lead researcher behind
ALOHA, cofounded Physical Intelligence, which secured a $400 million investment from major backers
including Jeff Bezos and OpenAI [18]. Despite this momentum, skepticism remains. Professor Jonathan
Hurst of Oregon State University and co-founder of Agility Robotics questions pixel-to-action methods, es-
pecially regarding safety critical applications [30]. Collecting enough data to handle all edge cases remains
a major hurdle. For example, Waymo began collecting data in 2009 [53], and its systems still do not rely
solely on pixel-to-action control [76].

Rose City Robotics (RCR) sees the main breakthrough of pixel-to-action research not in using TNNs
for motion control, but in the unification of diverse data modalities into a shared embedding space that cap-
tures semantic relationships. This embedding underlies generative models that can synthesize new outputs
from various input types. A promising development is the use of contrastive language-image pretraining
(CLIP)[55], which partitions embedding spaces using natural language labels. When paired with diffusion
models [67], CLIP enables synthesis of novel images from text prompts, thanks to shared embeddings for
language and vision. The ALOHA robot similarly benefits from embedding video inputs and robotic joint
outputs into a common space. Just as the brain integrates multiple sensory inputs, high-dimensional embed-
dings allow robotic systems to process diverse data streams. This also opens the door to natural language
control [8]. By operating in the embedding space, diffusion, and potentially other generative processes, can
be accelerated by orders of magnitude [59], underscoring the profound computational advantages of this
unified representation.

RCR leverages this concept to develop novel capability: purposeful exploration of embedding spaces
using Bayesian inference. In a sense, RCR can endow robotic agents with imagination. Inspired by active
inference (ActInf)[36, 61], a cognitive framework grounded in Bayesian reasoning [51], RCR will pursue a
related but more streamlined framework called information pursuit (IP)[23]. Robots equipped with imagi-
nation could overcome major challenges in today’s AI including:

1. hallucinations that reduce explainability and safety,
2. dependence on massive training datasets, and
3. poor handling of unexpected or novel inputs.

The core idea is to explore the embedding space by seeking states that provide the most novel informa-
tion. The embedding represents a robot’s internal model of reality, and it needs to generate samples from
this model to “imagine”, then select between various potential futures. For instance, in a task like removing
a bolt, the embedding space can be partitioned into regions where the bolt is present, where removal has
failed (e.g. robot collision), and where it has been successfully removed. Each future observation maps to
one of these regions. The robot must find a path from its current state to a successful outcome. A human
demonstration can serve as an initial guide, creating an informative prior for the IP algorithm. As the robot
executes the task, it may encounter unexpected conditions. For example, the bolt is occluded or the sur-
rounding material is damaged. In such cases, the robot must deviate from the original plan to gather new
information. IP provides a decision making layer that can enable a robot to determine whether it needs to
acquire more information to accurately perceive (identify and localize) an object. This project focuses on the
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feasibility of solving that problem as it is essential to commercialization. The motion planning problem to
a known location can be solved with fast (< 10 ms) closed form equations [17]. IP enables this adaptability
without requiring explicit programming or vast training datasets to handle every edge case.

While this capability has broad applications, RCR validated a critical need where current automation
fails. Our first product will be a robotic work cell for that purpose, sold to critical mineral recovery compa-
nies, vehicle OEMs, and scrapyards focused on recovering critical minerals for domestic markets.

1.2 Background on information pursuit. The history of work on Information Pursuit (IP) can be
summarized as follows. Jedynak and Geman (1996) [23] first proposed IP as a framework for actively
testing and tracking roads in satellite images. Their method was semi-automatic, requiring a starting point
and direction to guide the road tracking process. The core idea was to perform sequential tests, or queries,
about a "true hypothesis" (e.g., the presence of a road segment) and use the information gained from each
test to refine the tracking. IP evolved into a general approach for active testing, where a sequence of queries
is adaptively selected to gain information about a target variable. The selection of queries is based on
maximizing the mutual information (MI) between the potential query answer, a random quantity, and the
target variable, given the history of previous queries and answers. Beyond road tracking, IP has found
applications in face detection [69], localization, and tracking of surgical instruments [70, 71], as well as
scene interpretation [31, 38]. More recently, IP has been identified as a framework for explainable AI,
providing insights into the decision-making process by revealing the sequence of queries used to reach
a prediction [10]. Still other applications include sensor management, active sensing, and information-
driven adaptive data collection [34, 80]. But when is IP an optimal policy for gathering information in the
presence of noise or hidden information? The framework of the game of 20 questions has provided answers
[14, 32, 25]. Essentially, IP is a greedy policy that is shown to perform optimally or nearly optimally in a
wide range of settings.

Information pursuit, optimal control and reinforcement learning. Reinforcement Learning (RL)
and IP both involve sequential decision-making and learning from interaction. Both optimize to reduce un-
certainty and achieve goals. RL focuses on an agent learning what actions to take in a dynamic environment
to maximize cumulative reward. It is driven by a numerical feedback signal, aiming for an optimal long-term
policy. Conversely, IP is an AI strategy whereby a system selects queries to efficiently gain knowledge for a
confident prediction. Its goal is transparency and efficient information gain. RL typically involves physical
interaction and reward, while IP centers on strategic information gathering for explainable classification or
localization. Both represent distinct approaches to learning and decision-making.

Information pursuit and the free energy principle. The Free Energy Principle (FEP) from ActInf
literature and IP both leverage information theory concepts like entropy and uncertainty. Both involve op-
timization processes aimed at reducing uncertainty or "surprise." However, their scopes differ significantly.
FEP is a grand, unifying theory in neuroscience, positing that living systems minimize variational free en-
ergy to maintain their existence and predict sensory inputs through perception and action. It explains why
systems behave adaptively. In contrast, Information Pursuit is an AI/machine learning strategy for effi-
cient, interpretable prediction. It sequentially acquires specific, valuable information to classify or localize
confidently.

Information pursuit in robotics. IP potentially equips robots with the ability to make intelligent deci-
sions about where to go and what to perceive to efficiently reduce uncertainty and achieve the goals, partic-
ularly in complex and unknown environments. Examples of applications include autonomous exploration,
in which robots use information gained to guide their exploration process. They can decide on the "next-
best-viewpoint" or path to maximize the information acquired about the unknown environment, optimizing
for factors like coverage or mapping accuracy. Another application is active Simultaneous Localization and
Mapping [81, 37], where robots need to build a map of the environment while simultaneously determining
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their own position within that map. Still another application is sensor placement, where information the-
ory is used to determine the optimal placement of sensors on a robot [27] or in an environment, thereby
maximizing the information gathered for tasks such as system health monitoring or fault diagnosis.

1.3 Information pursuit algorithm. Here we describe the IP algorithm in the context of our specific
robotic application. For specificity, consider a camera placed at the end of a robotic arm that can be po-
sitioned and oriented as desired. We denote by s the position and orientation of the camera. We will use
the index t to reference algorithm steps. The image acquired during step t is denoted by O(st). To reduce
the high dimensionality resulting from the images and have the algorithm be driven exclusively by features
essential to the problem, we propose working instead on a latent feature space represented by embeddings,
denoted X(s), mapped from images, O(s).

Furthermore, let Z denote the vector describing the unknown position and orientation of the target
object, which for our purposes is a bolt on a battery. The IP algorithm is a Bayesian iterative algorithm that
sequentially acquires information about Z. We assume a prior distribution p0(z) and an initial position s1.
The time-step of the algorithm is initialized: t = 1. The history of past measurements is also initialized
h0 = →. A maximum number of iterations T̄ is defined. The IP algorithm is presented in Alg. 1.

Algorithm 1 Vision-driven Information Pursuit algorithm
1: Learn embedding mapping g : O(·) ↑ X(·)
2: Init: p0, h0 = →, s1, t = 1, T̄ .
3: while (t ↓ T̄ ) and (early stopping rule==false) do
4: Acquire a picture Ot = O(st)
5: Compute the embedding xt = g(Ot)
6: Update the history ht = ht→1 ↔ xt
7: Compute the posterior distribution pt(z) = P(z|ht)
8: Select the next position st+1 = args↑St

max I(Z,Xt+1(s)|ht)
9: t = t+ 1

10: end while

Iteratively, an image is acquired (line 4), its embedding is computed and added to the history (lines 5
and 6). The posterior distribution of the target is updated using Bayes’ rule (line 7), and the position of the
camera at the next step is chosen (line 8) by solving an optimization problem, where the cost function is the
mutual information and the optimization domain is a set of camera locations that might depend on the step
t. The time step of the algorithm is then incremented (line 9). Stopping occurs after a maximum number of
steps or after an early stopping rule has been verified.

1.3.1 Mutual information. The mutual information (MI) function to be optimized in line 8 is a well-
known information-theoretic quantity defined by Shannon in 1948 [62], which is given by

I(Z,Xt+1(s)|ht) = H(Z|ht)↗H(Z|Xt+1(s), ht) (1)

The first term on the right-hand side is E[↗ log(pt(Z))|ht] (i.e., the Shannon entropy of pt). It quantifies
the current uncertainty in the position of the bolt. The second term represents the expected uncertainty that
would remain in the location of the bolt if the camera were placed at s, an image were obtained there, and its
image was mapped onto its embedding xt+1. The difference between these two terms is always positive: on
average, any observation provides information. However, aiming for a location s where this quantity is large
will predominantly reduce the uncertainty in the location of the bolt, which explains the optimization in line
8 of the algorithm. Note that obtaining the very location where this quantity is the largest is not critical.
The set St will be chosen such that the cost of moving to the location s is not too high. Note also that the
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actual observation at s could provide a bad surprise and increase the uncertainty in the location of the bolt.
However, this occurs with vanishing probability on average when the algorithm is run for a large number of
time-steps.

1.3.2 Posterior Estimation. Note that, using Bayes rule

pt(z) ↘ P(xt|z, ht→1)pt→1(z), (2)

where ↘ means up to a multiplicative constant that does not depend on z. Although the likelihood P(xt|z, ht→1)
is not available, we may use samples from it using a digital twin of our system (the simulator henceforth)
and use likelihood-free methods to estimate it.

Likelihood-free inference refers to methods that approximate a posterior distribution when it is either
costly or impossible to evaluate the likelihood function (P(xt|z, ht→1) in our case), but sampling from it is
feasible, albeit expensive. This literature is large and growing, given the increasing complexity of modern
problems. We will focus on three particular types of approaches, namely, Approximate Bayesian Computa-
tion, Kernel mean embedding of conditional distributions, and Bayes Rule by Triangular Transport, which
we now briefly introduce.

Approximate Bayesian Computation (ABC). Among likelihood-free methods, Approximate Bayesian
Computation (ABC) [5, 12] is perhaps the best-known approach. ABC methods approximate the posterior
distribution using simulated samples from the likelihood, a summary statistic S(·), and a distance metric
d(·, ·). Many variants of ABC algorithms exist. In its simplest form, at iteration t of the IP algorithm,
ABC employs rejection sampling: first, a sample z ≃ pt→1(z) is generated; second, a simulated value
x(sim)
t ≃ P(xt|z, ht→1) is obtained from the simulator conditional on z; third, the sampled parameter z is

accepted if d(S(xt), S(x
(sim)
t )) ↓ ω, where ω is a prespecified tolerance. Repeating this procedure multiple

times approximates the posterior:

pt(z) ⇐ pω(z|xt, ht→1) ↘
∫

I
(
d(S(xt), S(x

(sim)
t )) ↓ ω

)
P(xt|z, ht→1)pt→1(z)dx

(sim)
t . (3)

Kernel Mean Embedding of Conditional Distributions (KMECD). Kernel methods [66] involve
mapping data into a feature space of high or infinite dimension, a Hilbert space, using a nonlinear mapping
and then performing linear operations in this feature space. The kernel trick enables these computations to
be performed implicitly, without explicitly using the feature space representation.

An extension of these principles enables mapping probability distributions into a feature space and com-
puting the expected values of nonlinear functions using an inner product, a linear operation [45]. Joint
distributions, as well as conditional distributions, can also be represented in feature space, leading to a
particular form of the Bayes rule [21] that closely resembles the Bayes rule for multivariate Normal distri-
butions. It can be computed from samples of the joint distribution by solving a linear system of equations,
obtaining an embedding of a conditional distribution at a reasonable computational cost.

Bayes Rule by Triangular Transport. Transport algorithms transform samples from a baseline distri-
bution into samples from a target distribution using diffeomorphic mappings defined through dynamical
systems and vector fields [2]. Triangular transport [4, 48] specifically generates samples from a conditional
distribution using samples from a joint distribution by learning a suitable vector field. In our context, the
dimension of this vector field maps from Rd+r to Rd, where d is the dimension of z, and r is the dimension
of the image embedding. Recent advances from our group [56, 57] offer efficient methods for learning such
high-dimensional vector fields, which we intend to deploy to approach for this application.
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1.4 Challenges. Algorithm 1 is straightforward in appearance; however, as with many other image-based
learning approaches, if not developed carefully it will not use data efficiently and will struggle to generalize
[60], especially with distracting, task-irrelevant elements in the observation space. Therefore, considerable
hurdles remain for commercialization that require addressing several key questions, which are summarized
below in a list of challenges to be targeted in this Phase I project.

First, what principles should guide the construction of the embedding function g to ensure robust per-
formance? Second, how should the prior distribution p0 be designed to improve algorithmic effectiveness?
Third, in the absence of an explicit likelihood, what computationally efficient methods can be used to esti-
mate the posterior pt(z) and how should we estimate the mutual information accurately? Lastly, how should
an effective early-stopping rule be chosen? Answering these critical questions poses a significant technical
challenge, especially given the computational limitations inherent in the online nature of the problem and
the anticipated human-robot interaction. Solving these technical challenges will lead to real-world robotic
systems utilizing IP.

Challenge 1: Generating the embedding function. Designing the embedding function g is critical
for enabling the algorithm to perform efficiently and cost effectively by (1) reducing problem dimensionality
and (2) extracting task relevant image features. We will use NVIDIA’s IsaacSim to generate and label images
for training. IsaacSim supports structured embedding development but does not guarantee that the resulting
latent space will be smooth enough for interpolation. In particular, moving between two embedding points
may not yield a valid intermediate state. The first objective of this Phase I project is to develop a suitable
embedding and demonstrate that it supports feasible exploration.

Challenge 2: Designing the prior p0(z). Because it seems possible to fall back on easy-to-specify
weakly-informative priors for the bolt location, Z, this task might mistakenly be thought of as trivial. Espe-
cially because weakly-informative priors are in many instances innocuous, and perhaps even conservative.
However in vision problems, like the one we seek to tackle, an unsuitable choice of prior will impose a
substantial performance penalty and would lack much needed (and available!) prior spatial and context-
specific constraints (e.g., battery is unlikely to be close to ceiling, symmetries in bolt placement, etc.). An
inadequately specified prior for the problem will inflate initial entropy, force wider posterior sample accep-
tance tolerances, and disperse simulator particles over regions the bolt can never occupy. The cascading
effect is considerable: posterior accuracy is degraded, producing noisier mutual-information estimates, ul-
timately forcing the robotic arm to execute multiple times more moves than needed to reach the required
precision. For an online system (where every additional move consumes time, energy, and hardware life)
this inefficiency directly undermines the algorithm’s value proposition.

To address this challenge, RCR will make use of all sources of relevant information available for prior
design, and incorporate it in a way that allows the prior to combine both certainty when possible and flexi-
bility when needed.

Challenge 3: Estimating the posterior pt(z). One of the main challenges associated with this problem
is obtaining a suitable approximation of the posterior in equation (2). The difficulty stems from multiple
sources. Chief among them is the fact that we have high dimensional image data with potentially complex
textures, lighting variations, reflections, and partial occlusions. Also, the unknown form of the likelihood
requires the use of likelihood free-methods, each bringing its own set of unique challenges. These issues
can be exacerbated in this type of problem given that the posterior will most likely be a hard-to-estimate
multi-modal function; as such, the number of samples needed from the simulator to achieve a reasonable
precision can easily become an obstacle for online deployment of the algorithm.

ABC methods involve matching through a specific distance metric summaries of simulated and ob-
served features within a prespecified tolerance. Both defining the distance metric and extracting meaningful
low-dimensional summaries from these images is non-trivial, and mistakenly specifying either can severely
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degrade posterior quality. Furthermore, maintaining sufficiently small tolerances may become computation-
ally prohibitive. Strategies to address these challenges include learning sufficient summary statistics via
neural networks [82, 49], or bypassing summary statistics altogether by comparing directly the observed
and simulated data through metrics such as Wasserstein distance [7], Maximum Mean Discrepancy (MMD)
[50], and Kullback-Liebler divergence [33]. To mitigate sensitivity to the tolerance parameter, adaptive
strategies such as Sequential Monte Carlo (SMC) [44, 65, 52], kernel weighting methods [46], and synthetic
likelihood approaches [78, 54, 3] have been proposed. We plan on comparing several of these approaches
to identify the one that is optimal for our specific application.

Challenge 4: Calculating mutual information from samples. A classic computation involving
the rearrangement of sums provides an equivalent characterization of the mutual information in terms of
Kullback-Leibler divergence, denoted KL, defined by Solomon Kullback in 1951 [35]:

I(Z,Xt+1(s)|ht) = KL (P(Z,Xt+1(s)|ht),P(Z|ht)P(Xt+1(s)|ht)) (4)

Estimating this quantity is a well-known challenging task. However, recent efforts have provided algorithms
that are available for us to test and compare, but still require a high level of expertise as will be discussed
below in Task 4.

1.5 Tasks and success criteria. The overall technical goal is to provide a vision-driven IP algorithm
that is both accurate and fast. To this end, we plan to proceed in two steps:
(A) Design a baseline version of the algorithm. In the baseline version, the algorithm will run for a fixed
number of steps;

(B) Improve upon this baseline by completing each of the challenges and evaluating the performance of the
algorithm using two metrics: % improvement in accuracy of the predicted bolt location, and % improvement
in execution time. We will sequentially address each challenge, measuring the improvement and choosing
the best-performing strategy (or set of strategies) at each stage.

Our goal is to achieve one step of the IP algorithm at a rate of 0.5 Hertz [30] with a final bolt
localization precision of 0.5 mm. By doing so, RCR and PSU will demonstrate that IP is a feasible
approach for implementation in battery disassembly and that the commercialization of this technology
should be pursued.

The position of the target (bolt) will be estimated using the maximum a posteriori estimator (MAP). The
algorithm will be evaluated over 100 independent episodes (new bolt positions), each time randomizing the
position of the target.

Accuracy will be measured using both the Root Mean Square Error (RMSE) between the true and
the posterior mean for Z. Wall clock time (average and standard deviation (sd)) will measure the time-
performance and the number of steps is used to measure the efficiency.

Baseline version. The baseline version of the algorithm builds upon past success from Jedynak in em-
ploying IP for vision tasks in [23, 69, 71]. The embedding function will be the identity. Simple alternatives
include lower-resolution images obtained by blurring and subsampling. A weakly-informative prior on Z
will be assumed as the baseline. The computation of the posterior (line 7) is obtained by using the standard
ABC algorithm with uniform kernel shown in equation (3) with d(·, ·) set to be euclidean distance. The set
of locations St considered in line 8 to identify st+1, will be obtained by simple random sampling. The mu-
tual information is estimated using samples from the joint distribution and the standard empirical estimator
using binning.

1.5.1 Task 1: Generating the embedding function. The success of the IP algorithm hinges on
constructing a robust, task aware embedding function, g : O(·) ↑ X(·) that maps high dimensional image
observations into a lower dimensional latent space. This space must capture task relevant features (e.g.,
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bolt location and orientation) while maintaining continuity for efficient Bayesian exploration. This work is
structured into six subtasks, each with clear evaluation metrics.
(A) Data Generation with Domain Labels. Using NVIDIA’s IsaacSim, we will generate a labeled dataset
capturing substeps in bolt identification and localization. Labels will reflect expert knowledge from industry
partners. Dataset quality will be assessed by number of configurations covered.

(B) Embedding Learning Strategies. We will compare three architectures: (1) a ε-Variational Autoencoder
(ε-VAE)[29], (2) a contrastive vision transformer [16, 42] (e.g., SimCLR [11], CLIP), and (3) BYOL [24].
Models will be trained on the IsaacSim dataset and assessed using classification accuracy, interpolation
fidelity, and semantic alignment with task substeps.

(C) Task Relevant Feature Encoding. We will assess how well embeddings represent task substeps using
an multilayer perceptron classifier to distinguish phases such as bolt detection, localization, and alignment.
Metrics include classification accuracy, silhouette scores, and alignment with CLIP-derived semantics. The
top model from subtasks B & C will advance to subtask (D).

(D) Embedding Regularization. To enhance smoothness and generalization, we will adopt consistency
regularization from NVIDIA’s embedding robustness work [73]. We will minimize embedding divergence
across perturbed inputs (e.g. crops, noise) and temporally adjacent frames. This subtask allows us to setup a
quantitative metric to determine the feasibility of using IP on the embedding manifold. We expect a function
g is Lipschitz continuous [47] if there exists a constant L such that

⇒⇑g(x)↗⇑g(y)⇒ ↓ L⇒x↗ y⇒ for all x, y in the domain.

The regularization loss using this method will help us estimate L in subtask E.

(E) Manifold Smoothness and Interpolation. We will analyze latent space continuity by interpolating be-
tween adjacent embedding samples and decoding the results. Realism of interpolated frames will be mea-
sured by reconstruction loss and embedding continuity. We are looking for an embedding with 10 ↭ L ↭
100, implying moderate curvature, smooth nonlinearities, and similar to ReLU nets.

This structured approach ensures the embedding compresses visual data while preserving the seman-
tic features critical for robotic perception and decision-making. Architectural comparisons, task-grounded
supervision, and robust regularization together support the development of robotic agents with actionable
environmental understanding.

1.5.2 Task 2: Designing the prior. Constructing a prior distribution over Z that incorporates physi-
cal constraints, plausible scene configurations, and human workflows will significantly reduce initial state
entropy, stabilize mutual information estimates, and accelerate convergence.

To build this prior, we will integrate three sources of information, including 1) Domain Knowledge:
Disassembly logs, handbooks, and CAD drawings provide details on bolt-free zones, symmetries, dimen-
sions, fastener specs, nominal placements, and common obstructions. These define feasible bolt regions; 2)
Simulator Imagery: While generating embeddings, we will sample diverse camera poses and bolt locations
in simulation, improving prior robustness and realism; and 3) Human Behavior: Observations of expert
disassembly will inform likely search strategies and spatial preferences, aligning the prior with practical
workflows.

We will embed this knowledge into p0(z) through the following steps:
(A) Letting p0(z) =

∫
p0(z|ϑ)p0(ϑ)dϑ, where ϑ := battery center coordinates, define p(ϑ) by encoding

hard spatial constraints into explicit support limits for ϑ.

(B) Conditioning on ϑ, introduce soft and hard design constraints for possible bolt placements by defining
p0(z|ϑ) as a mixture prior, centered on potential nominal bolt positions suggested by documentation and
adjusted according to known model specifications.
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(C) Calibrate the prior’s hyper-parameters by leveraging the empirical distributions obtained from the
simulator-generated imagery and human disassembly behavior to optimally match simulated feature statis-
tics.

1.5.3 Task 3: Estimating the posterior. As mentioned earlier obtaining an accurate estimation of the
posterior distribution at each step is critical for providing explainability and being able to monitor the robot.
It is also a challenging task given real-time constraints. Thus, we will implement and contrast methods
within three families of likelihood-free inferential strategies: Approximate Bayesian Computation (ABC),
kernel mean embedding of conditional distributions, and transport methods.

(A) Evaluate if selected embeddings provide a sufficient reduction to work directly with adaptive ABC
approaches (SMC, kernel weighting, synthetic likelihood).

(B) Assess ABC methods designed to directly compare observations (the embeddings xt in our case) to
simulations, using Wasserstein distance, MMD, and Kullback-Liebler divergence.

(C) Implement and assess the KMECD approach for conditional distributions, specifically evaluating the
computational feasibility and accuracy of extending the fixed-point algorithm for this problem.

(D) Develop and test the triangular transport method, leveraging our group’s recent methods for learning
efficient vector fields, to generate conditional samples effectively.

RCR and PSU will rank the methods according to their accuracy and efficiency, and identify the three
best strategies to estimate the posterior density and provide explainability.

1.5.4 Task 4: Estimating the mutual information and early stopping. Estimating mutual infor-
mation (MI) between continuous distributions from finite samples is statistically challenging, particularly in
high-dimensional embedding spaces. Key obstacles include the bias-variance trade-off and real-world data
issues such as noise, sparsity, and heavy tails, especially in imaging.

Traditional estimators like Kernel Density Estimation (KDE)[43] and k-Nearest Neighbors (kNN)[64]
are limited: KDE suffers from error amplification, while kNN struggles with paradoxical difficulty in quan-
tifying strong dependencies. Newer approaches address these shortcomings. Direct density ratio estimation
[68] avoids error propagation. Neural and variational estimators (e.g. MINE [6], InfoNCE [79]) and ker-
nel methods [1] reformulate MI estimation as optimization problems, enabling scalability. However, they
introduce challenges related to bias, hyperparameter sensitivity, and lack of ground truth for validation.

Effective practice in MI estimation necessitates a multi-pronged approach. General mitigation strategies,
including sophisticated bias correction techniques, various variance reduction methods, and preprocessing
steps like dimensionality reduction and feature selection, are indispensable. Furthermore, adaptive parame-
ter selection and rigorous cross-validation are essential for robust and generalizable results.

For the Information Pursuit (IP) algorithm, early stopping will rely on mutual information gain thresh-
olds: prolonged low gain will trigger termination. Alternatively, a low entropy posterior will signal conver-
gence to the target’s location.

We measure the accuracy of the bolt location determined by the algorithm at termination. If it is < 0.5
mm, and the algorithm converged in < 2 sec, then feasibility of our method for commercialization is proven.

1.6 Collaboration Plan. RCR and PSU senior personnel have monthly in-person meetings to discuss our
collaboration, and this will continue throughout the project period. Students working under the subaward
will meet with their advisors on a weekly basis. Short presentations of ongoing work, as well as current
publications will keep the team synchronized internally and externally. The PIs and graduate students will
meet on PSU campus as needed for intensive work sessions.
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Tasks Q1 Q2 Q3 Q4 Tasks Q1 Q2 Q3 Q4
0a: Baseline utility code RCR 3a: ABC posterior PSU

0b: IsaacSim virtual world RCR 3b: KMECD posterior PSU

0c: Baseline algorithm PSU 3c: Triangular transport PSU

1a: Learn embedding RCR 4a: Test MI algorithms PSU

1b: Embedding analysis RCR 4b: Test MI convergence RCR

2a: Design strong prior PSU 5: Prepare final demo All

2b: Compare to weak prior PSU

Table 1: Schedule of project activities for the duration of this award. Blue for RCR, Sepia for PSU task.

2 The Company / Team

2.1 The Company. RCR is a C-corporation founded in 2024 by Joseph Cole and Duncan Miller. The
company was formed to commercialize a new class of intelligent robots that can learn directly from obser-
vation and experience, with a focus on real-world applications such as battery disassembly, critical mineral
recovery, and industrial automation. Cole, a physicist and machine learning expert, and Miller, a seasoned
entrepreneur, launched the company to accelerate the integration of advanced AI, particularly transformer
neural networks and active inference, into robotics. RCR is headquartered in Portland, Oregon.

2.1.1 Core Competencies. Our multidisciplinary team brings deep technical, mathematical, and com-
mercialization expertise. Cole leads the technical vision, drawing on extensive experience in algorithm
design, system integration, and transformer architectures. He has delivered lectures on robotics and pixel-
to-action technology and spent five years developing CUDA kernels for time-critical GPU tasks. Miller
brings over 20 years of startup and business development experience, focusing on market strategy, partner-
ships, and workforce development. Jedynak, Maseeh Professor at Portland State University (PSU), offers
25+ years in machine learning, statistical modeling, and computer vision. His foundational work in IP and
probabilistic modeling is directly applicable to intelligent, adaptive robotics. Taylor-Rodriguez, also at PSU,
specializes in Bayesian testing, nonparametric models, and spatiotemporal inference. His expertise in un-
certainty quantification supports the team’s AI and simulation components. Together, the team integrates
advanced mathematics, AI, robotics, and commercialization experience, positioning the project for both
technical success and practical deployment.

2.1.2 Company Vision & Impact. RCR envisions a future where autonomous systems make critical
mineral recovery safer, faster, and fully domestic. Our mission is to replace hazardous manual labor with
intelligent robotic platforms for scalable, adaptive battery disassembly. By 2030, millions of tons of batteries
will reach end-of-life (EOL) annually, yet recycling remains inefficient and labor intensive, constrained by
the variety of proprietary pack designs. Our robots leverage imitation learning and information pursuit to
generalize from demonstrations, enabling precise, safe disassembly, even under uncertainty. This capability
supports both second-life reuse and direct recovery of critical minerals such as lithium (Li), cobalt (Co), and
nickel (Ni) and graphite (C), strengthening U.S. supply chain resilience. By reducing reliance on smelting
and manual labor, RCR can boost material recovery, cut emissions, and create high-skill jobs in robotic
system operation and support. RCR aims to lead in battery disassembly automation by delivering robust,
explainable AI solutions to a critical energy infrastructure challenge.

2.1.3 Revenue History. The company is currently earning revenue through technical consulting and
workforce development; in addition, each founder has contributed $100,000 in initial capital.

2.2 Company Management Team.
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2.2.1 Joseph Cole, Ph.D., CEO. Dr. Cole is a physicist and brings more than two decades of experience
in developing machine learning and computer vision algorithms, with prior roles at Northrop Grumman,
Applied Materials, and YorLabs. He holds a Ph.D. in Applied Physics from Rice University and a graduate
certificate in Applied Statistics from PSU. He also retired from the U.S. Army Reserves as a Major. Dr.
Cole won the PSU F. S. Cater Prize in Mathematical Sciences and a NASA Graduate Student Researcher
Program Fellowship at Rice University. Cole will be responsible for managing all grant deliverables and
ensuring milestones are met on time and reported accurately from RCR and sub-awardees.

2.2.2 Duncan Miller, MBA, CFO. Miller is a seasoned entrepreneur and business strategist. With an
MBA from Babson College, he has over 20 years of experience building and leading bootstrapped business-
to-business technology companies funded through cash flow. He is responsible for partner engagement,
customer discovery, go-to-market strategy, and financial planning. Having previously successfully launched
and transferred 4 commercial software products to market, Miller is highly capable of commercializing the
proposed software solutions. Miller will be responsible for administering and tracking grant timelines as
well as financial obligations.

2.3 Subawards.

2.3.1 Bruno Jedynak, DPhil, Professor, Portland State University. Jedynak’s research interests
include machine learning, statistical learning, statistical modeling, and stochastic search. Applications in
computer vision, medical image processing, natural language processing, bioinformatics, and computational
neuroscience. Jedynak is the founder of the IP algorithm with D. Geman. Their paper [23] has been cited
more than 700 times. Subsequent work on IP include [69, 70, 71, 32, 25, 26]. Jedynak will be in charge of
the collaboration with RCR and the overall PSU subaward. Jedynak will also lead the research related to
tasks 3 and 4: estimating the posterior and computing the mutual information.

2.3.2 Daniel Taylor-Rodriguez, Ph.D., Associate Professor, Portland State University. Taylor-
Rodriguez co-founded and currently leads the Computational and Data Enabled Science Consulting Lab. His
work has largely focused on advancing Bayesian hierarchical modeling strategies for high-dimensional data
with complex dependent structures, designing prior distributions for Bayesian testing that provide desirable
posterior behavior, developing flexible nonparametric Bayesian testing techniques to sidestep distributional
assumptions, and proposing efficient computational strategies for all of these approaches. Taylor-Rodriguez
will lead the Bayesian methodological components of the project, designing and coordinating the imple-
mentation for the sampling strategies considered, proposing suitable prior specification alternatives, and
supervising the work of students participating in the project.

2.4 Company Advisory Board. RCR’s advisory board consists of industry, policy and commercializa-
tion experts, Please refer to our Facilities, Equipment, and Other Resources section for a more complete
description of board members.

RCR has also secured letters of support, available upon request, from leading critical mineral recovery
stakeholders, including Cirba Solutions and American Battery Technology Company, as well as partners
Polaris Battery Labs and Loupe Automation, reinforcing market validation and commercialization.

3 Broader Impacts

3.1 Strengthening National Security Through Critical Mineral Recovery. The proposed devel-
opment of an intelligent robotic system for battery disassembly addresses urgent national priorities: securing
critical mineral supply chains, reducing dependence on foreign sources, and enhancing U.S. manufacturing
capabilities. Modern defense systems rely on materials like Li, Co, Ni, C (graphite), all mostly imported. By
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automating disassembly and recovery of these minerals from EOL batteries, RCR directly supports Defense
Production Act priorities and mitigates vulnerabilities in the U.S. industrial base.

3.2 Technical Innovation and AI Advancement. RCR is advancing robotics by integrating biolog-
ically inspired active inference and Information Pursuit into neural network training workflows. These
techniques allow robots to learn to operate efficiently under uncertainty, reducing data and programming
requirements. The system is trained via human demonstration and active learning, allowing rapid adaptation
to novel conditions. This innovation not only increases productivity in hazardous disassembly environments
but also pushes the frontier of explainable and efficient AI in robotics.

3.3 Economic Growth and Job Creation. RCR’s modular, low-cost systems enable distributed de-
ployment to vehicle depots, scrapyards, and battery collection centers nationwide. This anchors high-value
technical jobs in diverse regions, supporting workforce retraining in robotics, automation, and battery pro-
cessing. By democratizing access to battery disassembly and critical material recovery, RCR contributes
to the revitalization of American manufacturing. RCR estimates the adoption of the developed technology
over the next 10 years to affect nearly 10,000 recovery centers nationwide.

3.4 Repatriating Supply Chains and Advancing U.S. Competitiveness. By shifting strategic
material recovery to domestic facilities, RCR promotes critical mineral independence. This directly sup-
ports U.S. competitiveness in energy, advanced manufacturing, and national defense. With anticipated EOL
battery supply reaching 20 million tons annually by 2040, the impact of this innovation is substantial and
urgent.

3.5 Workforce Development and STEM Outreach. RCR is building America’s next-generation work-
force in robotics and materials recovery. Partnerships with Portland State University (PSU) enable under-
graduate and graduate students to engage in real-world R&D. RCR will also contribute datasets from its
teleoperation platform to academic curricula in computer vision and machine learning. Existing efforts in-
clude site tours, internships, and high school outreach programs to expose students to careers in intelligent
automation and critical minerals. RCR tracks training efforts and to date has measured success criteria of
tripling engagement rate and with over 1,000 trained students to-date.

3.6 Academic-Industry Collaboration. This project bridges the gap between fundamental research
and industrial deployment. Collaborations with PSU and Oak Ridge National Laboratory enable transfer of
cutting-edge research in machine learning and robotic control into a deployable product. RCR is uniquely
qualified to transfer the fundamental research done to industrially relevant applications.

3.7 Enhancing Worker Safety in Hazardous Jobs. Manual battery disassembly exposes workers
to high-voltage electrocution, toxic gas release, and explosive thermal runaway. RCR’s teleoperated and
autonomous robotic system physically isolates humans from these hazards. This not only protects human
health but also establishes a model for automation-enhanced safety protocols in U.S. industry. RCR intends
to track and measure the estimated number of workers better protected from significant risk as the technology
developed is transferred to industrial facilities.

3.8 Minimizing Unintended Consequences. RCR is fully aware of the potential downsides of AI,
particularly concerns about automation displacing skilled labor and increasing technological opacity in criti-
cal industries. To counter these risks, RCR’s approach prioritizes explainable and human-guided AI, specif-
ically through IP architectures that mimic human decision-making under uncertainty. Unlike traditional
deep learning models, which are often opaque and data-hungry, IP models require significantly less training
data, are more interpretable, and remain adaptable through human oversight. This ensures that automation
enhances rather than replaces skilled labor roles, particularly in hazardous environments.
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3.9 Upskilling and knowledge transfer. To mitigate workforce disruption, RCR emphasizes up-
skilling and knowledge transfer, offering ongoing training programs and internships in robotics and AI
systems. The societal benefits of RCR’s work including improved workforce safety, increased student en-
gagement in STEM, and expanded regional access to technical jobs will be quantitatively tracked through
metrics such as a) the number of students and interns trained, b) retention statistics from outreach programs,
c) reductions in manual labor hours in hazardous tasks, and d) adoption rates of RCR technology in domestic
critical mineral recovery centers. These indicators will be reviewed annually to guide program adjustments
and ensure long-term impact.

4 Commercialization Potential

4.1 Market Analysis. By 2030, over 1.8 megatons of lithium-ion batteries (LiBs) will reach end-of-life
(EOL) annually, a figure projected to rise to 20.5 megatons by 2040, growing at 25%/year. Meanwhile,
demand for critical battery materials is surging while supply falls short. Projected demand exceeds U.S.
domestic supply of Li, Ni, and Cu, requiring >50% of global Li and Ni reserves and over 200% of global
Co reserves [9].

4.2 Business Model. RCR plans to license hardware and software to customers along with custom-built
solutions for specific processes. The company will provide on-site system integration, training, and support.
RCR will charge a monthly software subscription fee for access to their proprietary machine learning algo-
rithm, software interfaces and data information system, enabling companies to build a competitive advantage
through their own proprietary datasets of battery disassembly procedures and training data.

Despite being slow, dangerous, and expensive, manual disassembly remains the standard method for
extracting materials. RCR interviewed Cirba Solutions, a U.S. critical mineral recovery company with
10,000 tons of capacity and plans to scale 10x by 2030 [58]. The process takes 1 to 3 hours/pack and
is not scalable, even in centralized facilities [58, 28, 75]. Shredding whole packs yields only 35% black
mass and 65% low-value material, whereas pre-disassembly boosts black mass recovery to 60% and extends
equipment life [58].

OEMs like Daimler Trucks North America also disassemble batteries manually. EOL batteries are
returned to a Michigan facility, where they are disassembled down to the module level [40]. Maximizing
disassembly pre-shredding reduces mixing, improves black mass recovery, and protects equipment [58].
High-value batteries yield up to $600 in material profit/ton using current methods [9]. RCR’s automated
disassembly could increase that margin by 5x through materials recovery [15].

Alternatives to manual disassembly include pyrometallurgy (burning) and hydrometallurgy (shredding
with acid); both are energy-intensive, generate waste, and often lose high-value materials (Li and graphite).
For instance, a 1,100 lb NMC622 battery contains 23 lbs of lithium (worth >$100) and 159 lbs of spheroidized
graphite, much of which is lost in pyrometallurgy [22, 77]. Recovery today is confined to a few specialized
facilities as the process is complex, hazardous, and expensive. Transport adds further burden. Batteries are
large, irregularly shaped, often damaged, and require fire-safe packaging, leading to higher logistics costs.

RCR proposes a modular, automated robotic disassembly platform to enable distributed processing.
Disassembling at the point of collection improves economics in 3 key ways; 1) it preserves manufacturing
value by identifying and redirecting viable modules and cells for second-life use, 2) it cuts transport costs
by removing low-value decking material and eliminating inefficient full-pack handling, and 3) it enables
higher-density shipping of critical materials by breaking packs into cells. Overall RCR’s system reduces
the cost of critical mineral recovery from $130 to $40 per ton, a 3x improvement over manual methods,
making domestic processing economically viable for the first time at scale. See Table 3 below for revenue
projections.
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4.3 Customer Validation. RCR interviewed over a dozen potential customers across key market seg-
ments including critical battery materials firms, automotive OEMs, scrap yards, and logistics operators.
Conversations with key stakeholders are summarized in the table below.

Table 2: Customer Validation Quotes

Name and Affiliation Quote
Ryan Melsert, CEO and
CTO, American Battery
Technology Company

“This RCR technology has the potential to improve throughput, increase
yields and reduce downstream costs of recycling. This innovation can help
significantly increase the percentage of LiBs recovered as well as the quality
and usefulness of materials. [41]”

Anthony Rogers, VP of
Technology and Growth,
Cirba Solutions

“RCR’s proposed automated disassembly technology could serve as a force
multiplier that would enable our current disassembly team to greatly in-
crease the number of packs they are able to disassemble while also provid-
ing them with an additional level of safety. [58]”

Travis Hesterberg, PhD,
Director of Technology
and Innovation, Ecobat

“We set up our plants to be very flexible on what incoming batteries we can
accept. With large-format batteries we do typically need to do some level of
disassembly to get them to fit. We definitely have some overlap in interest
and capabilities, and depending on TRL/MRL we might even be a customer.
[28]”

Apoorva Mathur*, ZTG
Support Manager, Daim-
ler Trucks NA

“The application is definitely there to your point in terms of broader vehicle
OEM basis and even from a second life battery extension basis. A lot more
OEMs are trying to understand how they can disassemble the packs that
they get back from their customers, from their dealerships. [40]”

Carl Fletcher*, Remanu-
facturing Leader, Inter-
national Trucks

“We see real benefit in the robotized dismantling of batteries from both a
safety and economic perspective. Dismantling batteries ahead of shredding
is a great way to improve black mass quality. [19]”

Joe Day*, Commercial
Manager, Li-Cycle

“RCR emerging technology will provide a valuable solution to lithium-ion
handlers and processors aiming to increase their efficiencies through auto-
mated pack and module disassembly. [13]”

Grayson Shor*, Battery
Circularity Lead, Ama-
zon.com

“We’re going to have a lot of end-of-life material that there’s not an industry
really well set up to handle yet in the US. The more I can automate the pro-
cess, the more it can reduce the costs, the more I can reduce safety risks, the
more I can localize, the better. [63]”

* personal opinion that does not represent any company, and the statement should not be considered an
endorsement of Rose City Robotics or the technology by the company.

4.4 Competitive Analysis. The most comparable solutions identified by RCR are tabled below.

4.5 Intellectual Property Strategy. Travis Woodland, Director of PSU’s Innovation, IP, and Business
Development is guiding the team’s IP strategy. The initial RCR prototype is based on open-source hard-
ware and software developed by Stanford, and the team is developing patentable IP around a purpose-built
solution for batteries. In addition, the team is developing a generative AI model specifically for battery
disassembly. RCR is also developing proprietary hardware-software interfaces by writing custom computer-
based and spatial computing user interface software. This will allow battery technicians to better interact
with the robot, teaching it new skills which can be disseminated to follower robots in real time.
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4.6 Commercialization Strategy. RCR’s commercialization plan, see Table 4 below, focuses on mov-
ing from prototype development to market deployment within 6 years, supported by phased R&D, strategic
partnerships, and staged financing. In Year 1, RCR will complete Phase I R&D and identify strategic part-
ners. In Year 2 the team will begin Phase II R&D. In Year 3, secure joint development agreements and
co-develop the product with partners. In Year 4, finalize development, hire sales and marketing staff, and
begin executing customer agreements. Year 5 will focus on growth, securing commercial contracts and
preparing for expansion into a 2nd vertical (consumer electronics, military equipment, mineral mining). By
Year 6, RCR expects to launch a prototype product for the second market.

4.7 Funding History & Support Needs. RCR has been bootstrapped to date, funded by co-founders
Joseph Cole and Duncan Miller. Early R&D was supported through revenue from consulting and workforce
development training. NSF STTR Phase I funding will enable critical algorithm development and early
testing with commercialization partners. RCR anticipates Phase II and strategic investment to scale, with
revenue projected from hardware and software sales in 2028.

Table 3: Revenue Projections ($000)

Category Yr 1 Yr 2 Yr 3 Yr 4 Yr 5
SBIR funds 300 500 500 0 0
Software Sales 0 0 0 360 960
Hardware Sales 0 0 400 3,500 10,000
Workforce Dev 500 1,000 1,500 2,000 2,000
Total 800 1,500 1,400 3,860 12,960

Assumptions: Pricing for our hardware and software was estimated based on discussions with cus-
tomers, who validated an initial cost point of $180/ton of annual capacity of automated disassembly sys-
tems (including labor), reducing to $90/ton at full autonomous operation and 100,000 tons/year capacity
[75, 58, 41]. The cost of manual disassembly is estimated to be $0.05/pound [58]. Manual hours per battery
is estimated at 1-3 hours [75, 58, 41, 28, 15]. A full-pack shredding system is estimated to cost $700/ton in
capital cost, while a small-scale shredding system is estimated at $500/ton of capacity [58, 28, 39]

Table 4: Commercialization Plan

Activity Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 6
Conduct Phase I R&D Project
Identify strategic partners
Conduct Phase II R&D Project
Identify strategic partners
Execute joint development agreement
Jointly complete product development
Recruit & hire sales & marketing
Execute customer agreements
Identify & launch second vertical
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Table 5: Competitive Analysis

Feature Apple
(Daisy)

Universe
Energy

Posh
Robotics

Molg RCR

Designed for lithium-ion battery packs
Handles large, non-uniform pack sizes
Computer vision + AI for disassembly
Fully autonomous robotic disassembly
Modular, containerized deployment
Enables second-life reuse
Proprietary Information Pursuit ML
Optimizes black mass yield
Suitable for U.S. deployment

4.8 Key Market Risks. Key uncertainties include the pace of battery adoption, evolving regulations, and
fluctuations in critical mineral prices. RCR must also manage financial risks by balancing cash flow, R&D
spending, and operational costs.

International competition, particularly from China’s Made in China 2025 initiative and the EU’s coordi-
nated battery strategies, could threaten U.S. leadership in critical materials recovery.

Commodity pricing for Li, Ni, Co and Cu directly affects the economics of recovery. While short-term
volatility is expected, long-term demand will outpace supply due to widespread lithium-ion battery adoption.
RCR is positioning its technology to be viable under varied pricing conditions and evolving global dynamics.

4.9 Safety & Regulation. The system will be designed to meet industry safety standards (OSHA, ANSI,
NFPA) and include automated safeguards for high-voltage, thermal, and chemical risks.

4.10 Ethical Commitments. RCR’s approach prioritizes national security, domestic job creation, safer
working conditions, and reduced reliance on offshore processing by empowering U.S.-based facilities with
automated tools.

5 Results from prior NSF support

Jedynak and Taylor-Rodríguez are co-PIs of the RTG: Program in Computation and Data-Enabled Science
#2136228, 5/15/2022-4/30/2027. This RTG aims to produce unique workforce additions possessing deep
knowledge in specific areas of computational mathematics and statistics, as well as a broad understanding
of current issues in data-driven science. Together, Jedynak and Taylor-Rodríguez have led the creation and
development of the data science consulting lab, one of the major goals of this grant. With support from the
CADES RTG program 13 postdocs, 9 PhD and 9 undergraduate students have been funded, 22 manuscripts
have been published in total. This award does not overlap with the current proposal.

Jedynak was also a co-PI for CC* Compute: GPU-based Computation and Data Enabled Research and Ed-
ucation (G-CoDERE) at PSU #2019216, 7/1/2020-6/30/2022, which has enabled Portland State University
to become a major provider of high-performance computing in Oregon. This award does not overlap with
the current proposal.
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2 Portland State University
OIT Research Cyberinfrastructure. Portland State University has a high degree of centralization
of IT resources and support for academic and research computing. The O!ce of Information Tech-
nology’s (OIT) Linux Applications Platform team in the Technology Infrastructure (TI) division
provides central research computing support and provides free research computing resources, exper-
tise, and training to students, faculty, and sta". The research computing sta" work directly with
researchers to identify their research computing needs in order to facilitate their research goals. TI’s
Data Center Operations and Networking teams provide data center and networking infrastructure
support for central research systems.

The O!ce of Information Technology provides a highly functional, widely used campus cyber-
infrastructure that e"ectively serves many PSU campus research projects. This is a thoughtfully
integrated environment with mutually accessible file systems for home directory, labs shares, scratch
volumes, and web directories to facilitate research work, data storage, and data sharing.

Computational Resources. OIT supports a number of computational systems that host a large
range of scientific applications for computational mathematics, chemistry, biology, genetic analysis,
hydrology, fluid dynamics, GIS, general purpose scientific, and statistical software. Support for
applications, end-users, and custom systems (HPC, GIS) is provided by OIT Research Computing.

Coeus HPC cluster. Coeus is a general purpose HPC cluster, designed to address a broad range
of computational requirements. Estimated peak performance of 110 TFLOPs, Intel Omni-Path
high-performance network (100 Gb), and 200 TB scratch storage.

• Two login nodes and two management nodes head nodes:

– 2x Intel Xeon E2630 v4, 10 cores @ 2.2 GHz
– 64GB 2400 MHz RAM

• 128 compute nodes:

– 2x Intel Xeon E2630 v4, 10 cores @ 2.2 GHz
– 128 GB 2133 MHz RAM
– 200 GB SSD

• 12 Intel Phi processor nodes:

– Intel Xeon Phi 7210, 64 cores @ 2.2 GHz, 4 hyper-threads/core
– 96 GB 2400 MHz RAM
– 200 GB SSD drive

• 2 large-memory GPU compute nodes:

– 2x Intel Xeon E2650 v4, 12 cores @ 2.2 GHz
– 1x Nvidia V100 GPUs
– 768 GB 1866 MHz RAM
– 2 TB local scratch

• 10 GPU nodes:

– AMD EPYC 7520P, 32 cores @ 2.5 GHz

Page 50 of 95



– 4x Nvidia A40 or RTX A5000 GPUs
– 2 TB NVMe local storage

• Data Transfer Node to support high-bandwidth data transfers:

– Dual Intel Xeon E2650 v4, 12 cores @ 2.2 GHz
– 256GB 2400 MHz RAM
– 30 TB local disk storage transfer volume in a RAID 6 array

– 200 TB NFS scratch storage
– Dual Intel Xeon E2650 v4, 12 cores @ 2.2 GHz
– 768 GB of 1866 MHz Registered ECC DDR4 memory
– 32 x 8 TB SATA drives in a RAID 6 configuration
– 2 TB NVME drive

• Intel Omni-Path high-performance network fabric

• 1 Gb ethernet cluster management and IPMI networks

Orca HPC cluster. The Orca cluster features 25 GPU-enabled compute nodes, each with 4 GPUs.
Six nodes have Nvidia L40S GPUs, and 19 nodes have Nvidia A30 GPUs. All nodes have 64 core
AMD EPYC Genoa 9534 2.45 GHz CPUs with 576 GB RAM and 480 GB SSD for local scratch
storage.
High-Performance Storage. Scratch volume is provisioned on the Panasas ActiveStor Ultra parallel
file system storage array consisting of three ASD-100 director nodes and 20 ASU-100 storage nodes.
Total raw capacity of the array is 1,688 TB; half of that is provisioned as a scratch volume on the
Coeus cluster. Panasas nodes have a 25GbE connection into the TOR switch that has a 100GbE
uplink into the PSU network. Proprietary DirectFLOW client is deployed on all of the HPC nodes
to provide parallel high storage performance but Panasas supports NFS and SMB protocols that
can be used by non HPC clients to access the data. Data on Panasas is not backed up but Panasas
snapshots are used to provide basic data recovery functionality. Currently, we preserve four 6-hour
snapshots, four daily snapshots and four weekly snapshots.

PSU’s NetApp storage array is used for the HPC data that is supposed to be kept beyond the
runtime of the job. Multiple volumes are provisioned for the purpose of home directories, research
projects, and software repositories using NFS to both Coeus nodes as well as standalone compute
servers to provide ease of access for development and potential data movement.

Primary volumes are hosted on the FAS8700 NetApp array located in our primary datacenter
while all of that data is also replicated to FAS8200 located in our hot site where it could be brought
back online in case of the primary data center outage. All of the data is protected by the 4 months of
NetApp snapshots as well as backups provided by our enterprise IT Commvault instance. NetApp
array has multiple link aggregations to the 25 GbE network, providing robust and redundant network
performance.
Networking. The Portland State campus core network includes dual, redundant 10 Gb paths be-
tween all science and research buildings and the data center. These buildings have 1 Gb networking
to the desktop. Wireless 802.11b/g/n networking is available in common areas and classrooms at
speeds up to 1 Gb. The Research and Innovation Network (RAIN) from CC* #1541469 and its
Science DMZ provide an alternate 10 Gb path via Internet2 bypassing the campus firewall allowing
high-speed data transfer on- and o"-campus. Two data transfer nodes are available for high-speed
data transfer on campus and o" via Internet2.

Page 51 of 95



OIT Personnel and Services. Computing research is supported by Portland State University’s
O!ce of Information Technology personnel. These e"orts are led by Computing Infrastructure As-
sociate Director and Chief Information Security O!cer Gary Sandine, in coordination with Linux
HPC sta" Jim Stapleton, Marko Markoc, and Michael Ewan, Data Center Specialist Aaron Lan-
dreth, and Network Engineer Brian Lehigh. PSU’s Linux systems administrators from OIT’s Linux
Applications Platform team provide after-hours on-call support for any critical hardware, perfor-
mance, or security issues that arise. Virtualization is be facilitated by PSU’s VMware enterprise
infrastructure and supported by OIT’s enterprise virtualization team which is a part of its Windows,
Virtualization, Storage, and Backups team.

Research Colocation Facility. PSU’s O!ce of Information Technology (OIT) manages a data center
in the Fourth Avenue Building, which is currently used to house PSU’s Coeus cluster. Racks in the
data center are arranged in hot/cold aisles for warm-air extraction. A computer room air handler
provides cooling for this facility, including a series of multistack dedicated heat recovery chillers. Two
diverse utility power feeds power the data center, which is also protected by two 300 kVA Mitsubishi
Uninterrupted Power Supply (UPS) units and two static transfer switches for power redundancy. In
case of catastrophic power failure, the data center is also backed by a turbine generator. The total
power available to the facility is 240 kVA. A Very Early Smoke Detection Apparatus (VESDA) with
dry water pipe is system used in this facility. Hand-held Halotron fire extinguishers are also located
on-site.
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N/A 06/1999

Operations and

Management

Appointments and PositionsAppointments and Positions

2024 - present Co-founder & CFO, Rose City Robotics, Portland, Oregon, United States

2025 - present Limited Partner, E8 Angel Investors Fund, Seattle, Washington, United States

2025 - present Head Coach, FIRST Robotics FTC Team #30603, Portland, Oregon, United

States

2025 - present Judge, Invent Oregon Competition, Portland, Oregon, United States

2024 - present Community Liaison, Metro Region Innovation Hub, Portland, Oregon, United

States

2024 - present Mentor, Coach, Advisor, Portland State University, Portland, Oregon, United

States

2024 - present Organizer, Robotics Collaborative, Portland, Oregon, United States

2024 - present Co-Organizer, Pacific Northwest Battery Collaborative, Seattle, Washington,

United States

2022 - 2025 Founder & CEO, Waivolt Energy Professional Technical Training (merger),

Portland, Oregon, United States

2022 - 2024 Founder & CEO, Shiro LLM Prompt Engineering Platform (exit), Portland,

Oregon, United States

2010 - 2011 Consultant - Interim Financial Controller, Living Harvest (during acquisition by

Cell-nique), Portland, Oregon, United States

2006 - 2023 Co-founder & CFO, HeatSpring Energy Professional Technical Training (exit),

Cambridge, Massachusetts, United States

SCV Biographical Sketch v.2024-1 Page 1 of 2

Page 57 of 95



2005 - 2006 Consultant - Business Analyst, Symbol Technologies (during acquisition by

Motorola), Holtsville, New York, United States

2002 - 2005 Implementation Consultant - Financial Information Systems, MEDITECH -

Medical Technology Incorporated, Framingham, Massachusetts, United States

ProductsProducts

Products Most Closely Related to the Proposed Project

1. Miller D. Business Website: Rose City Robotics. N/A. 2024. Available from:

https://rosecityrobotics.com

2. Miller D. Open Source Software Repository: Large Language Model (LLM) Prompt

Engineering. N/A. 2024. Available from:

https://github.com/duncantmiller/llm_prompt_engineering

3. Miller D. Open Source Software Repository: Shiro Python Library. N/A. 2024. Available from:

https://github.com/openshiro/shiro-python

4. Miller D. Business Website: Shiro. N/A. 2022. Available from: https://openshiro.com

5. Miller D. Video: PNW Battery Collaborative Event Host. N/A. 2025. Available from:

https://www.youtube.com/watch?v=_jbkGpuzToI&ab_channel=RoseCityRobotics

Other Significant Products, Whether or Not Related to the Proposed Project

1. Miller D. Open Source Software Repository: Student Portfolio Website Template. N/A. 2025.

Available from: https://github.com/duncantmiller/portfolio-website-bridgetown

2. Miller D. Open Source Software Repository: AI Developer Resources. N/A. 2023. Available

from: https://github.com/RoseCityRobotics/ai-developer-resources

3. Miller D. Open Source Software Repository: Monopoly in Ruby. N/A. 2013. Available from:

https://github.com/duncantmiller/monopoly-copy

4. Miller D. Open Source Software Repository: BotDevs AI Developer Job Board. N/A. 2023.

Available from: https://github.com/duncantmiller/botdevs.ai

5. Miller D. Business Website: HeatSpring. N/A. 2006. Available from:

https://www.heatspring.com

Certification:Certification:

I certify that the information provided is current, accurate, and complete. This includes but is not

limited to information related to domestic and foreign appointments and positions.

I also certify that, at the time of submission, I am not a party to a malign foreign talent recruitment

program.

Misrepresentations and/or omissions may be subject to prosecution and liability pursuant to, but not

limited to, 18 U.S.C. §§ 287, 1001, 1031 and 31 U.S.C. §§ 3729-3733 and 3802.

Certified by Miller, Duncan in SciENcv on 2025-06-29 23:08:48
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Effective 05/20/2024 OMB-3145-0279NSF BIOGRAPHICAL SKETCH

IDENTIFYING INFORMATIONIDENTIFYING INFORMATION::

NAME: Taylor Rodriguez, Daniel

ORCID iD: https://orcid.org/0000-0002-2959-0281

POSITION TITLE: Associate Professor

PRIMARY ORGANIZATION AND LOCATION: Portland State University, Portland, Oregon,

United States

Professional PreparationProfessional Preparation::

ORGANIZATION AND LOCATION DEGREE

(if applicable)

RECEIPT DATE FIELD OF STUDY

University of Florida, Gainesville, FL, USA PHD 08/2014

Interdisciplinary

Ecology /

Statistics

University of Florida, Gainesville, FL, USA MSTAT 12/2011 Statistics

Universidad Nacional de Colombia, Bogota,

Bogota, Colombia
BS 06/2007 Statistics

Universidad de Los Andes, Bogota, Bogota,

Colombia
BS 06/2003 Economics

Appointments and PositionsAppointments and Positions

2023 - present Associate Professor, Portland State University, Portland, Oregon, United States

2017 - 2023 Assistant Professor, Portland State University, Portland, OR, United States

2016 - 2017 Research Associate Geospatial Lab, Michigan State University, East Lansing,

MI, USA

2015 - 2016 Postdoctoral Associate, Duke University, Durham, NC, USA

2014 - 2015 Postdoctoral Fellow, SAMSI, Research Triangle Park, NC, USA

ProductsProducts

Products Most Closely Related to the Proposed Project

1. Gutiérrez L, Barrientos A, González J, Taylor-Rodríguez D. A Bayesian Nonparametric

Multiple Testing Procedure for Comparing Several Treatments Against a Control. Bayesian

Analysis. 2019; 14(2):-. Available from: https://projecteuclid.org/journals/bayesian-

analysis/volume-14/issue-2/A-Bayesian-Nonparametric-Multiple-Testing-Procedure-for-

Comparing-Several-Treatments/10.1214/18-BA1122.full DOI: 10.1214/18-BA1122

2. Taylor-Rodriguez D, Finley AO, Datta A, Babcock C, Andersen HE, Cook BD, Morton DC,

Banerjee S. Spatial Factor Models for High-Dimensional and Large Spatial Data: An

Application in Forest Variable Mapping. Stat Sin. 2019;29:1155-1180. PubMed Central

PMCID: PMC7731981.

3. Taylor-Rodriguez D, Womack A, Bliznyuk N. Bayesian Variable Selection on Model Spaces

Constrained by Heredity Conditions. Journal of Computational and Graphical Statistics.

2016 May 10; 25(2):515-535. Available from:

https://www.tandfonline.com/doi/full/10.1080/10618600.2015.1056793 DOI:
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10.1080/10618600.2015.1056793

4. Taylor-Rodríguez D, Womack A, Fuentes C, Bliznyuk N. Intrinsic Bayesian Analysis for

Occupancy Models. Bayesian Analysis. 2017; 12(3):-. Available from:

https://projecteuclid.org/journals/bayesian-analysis/volume-12/issue-3/Intrinsic-Bayesian-

Analysis-for-Occupancy-Models/10.1214/16-BA1014.full DOI: 10.1214/16-BA1014

5. Taylor-Rodríguez D, Kaufeld K, Schliep E, Clark J, Gelfand A. Joint Species Distribution

Modeling: Dimension Reduction Using Dirichlet Processes. Bayesian Analysis.

2017 December 1; 12(4):-. Available from: https://projecteuclid.org/journals/bayesian-

analysis/volume-12/issue-4/Joint-Species-Distribution-Modeling-Dimension-Reduction-Using-

Dirichlet-Processes/10.1214/16-BA1031.full DOI: 10.1214/16-BA1031

Other Significant Products, Whether or Not Related to the Proposed Project

1. Martinez N, Sinedino LD, Bisinotto RS, Ribeiro ES, Gomes GC, Lima FS, Greco LF, Risco CA,

Galvão KN, Taylor-Rodriguez D, Driver JP, Thatcher WW, Santos JE. Effect of induced

subclinical hypocalcemia on physiological responses and neutrophil function in dairy cows. J

Dairy Sci. 2014 Feb;97(2):874-87. PubMed PMID: 24359833.

2. de Rivera C, Bliss-Ketchum L, Lafrenz M, Hanson A, McKinney-Wise L, Rodriguez A, Schultz

J, Simmons A, Taylor Rodriguez D, Temple A, Wheat R. Visualizing Connectivity for Wildlife

in a World Without Roads. Frontiers in Environmental Science. 2022; 10:-. Available from:

https://www.frontiersin.org/articles/10.3389/fenvs.2022.757954/full DOI:

10.3389/fenvs.2022.757954

3. Pereira LA, Taylor-Rodríguez D, Gutiérrez L. A Bayesian nonparametric testing procedure for

paired samples. Biometrics. 2020 Dec;76(4):1133-1146. PubMed PMID: 32012223.

4. Pereira L, Gutiérrez L, Taylor-Rodríguez D, Mena R. Bayesian nonparametric hypothesis

testing for longitudinal data analysis. Computational Statistics & Data Analysis. 2023 March;

179:107629-. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167947322002092

DOI: 10.1016/j.csda.2022.107629

5. Dorazio R, Taylor Rodríguez D. A Gibbs sampler for Bayesian analysis of site occupancy data.

Methods in Ecology and Evolution. 2012 August 20; 3(6):1093-1098. Available from:

https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2012.00237.x DOI:

10.1111/j.2041-210X.2012.00237.x

Certification:Certification:

I certify that the information provided is current, accurate, and complete. This includes but is not

limited to information related to domestic and foreign appointments and positions.

I also certify that, at the time of submission, I am not a party to a malign foreign talent recruitment

program.

Misrepresentations and/or omissions may be subject to prosecution and liability pursuant to, but not

limited to, 18 U.S.C. §§ 287, 1001, 1031 and 31 U.S.C. §§ 3729-3733 and 3802.

Certified by Taylor Rodriguez, Daniel in SciENcv on 2025-06-16 21:23:28
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Other Personnel Biographical Information

Data Not Available

Page 61 of 95



Effective 05/20/2024 OMB-3145-0279NSF C&P(O)S

CURRENT AND PENDING (OTHER) SUPPORT INFORMATION

Provide the following information for the Senior/key personnel and other significant contributors.

Follow this format for each person.

*NAME: Cole, Joseph Raymond

PERSISTENT IDENTIFIER (PID) OF THE SENIOR/KEY PERSON: https://orcid.org/0009-0009-1938-5864

*POSITION TITLE: President and CEO

*ORGANIZATION AND LOCATION: Rose City Robotics, Inc., Portland, Oregon, United States

Proposals/Active Projects

*Proposal/Active Project Title:

STTR Phase I: Explainable Robotic Motion Planning

in Unstructured Environments Using Information

Pursuit for Critical Mineral Recovery

*Status of Support: Pending

Proposal/Award Number: 261499

*Source of Support: NSF STTR

*Primary Place of Performance: 2130 SW 5th Ave, Suite 245B, Portland, OR 97201

*Proposal/Active Project Start Date: (MM/YYYY): 01/2026

*Proposal/Active Project End Date: (MM/YYYY): 12/2026

*Total Anticipated Proposal/Project Amount: $305,000

* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2026 2.4

*Overall Objectives: Develop an information pursuit algorithm for robotic applications.

*Statement of Potential Overlap: No overlap. This is the proposal currently under consideration for funding.

Certification:

I certify that the information provided is current, accurate, and complete. This includes but is not limited to

current, pending, and other support (both foreign and domestic) as defined in 42 U.S.C. § 6605.

I also certify that, at the time of submission, I am not a party to a malign foreign talent recruitment program.

Misrepresentations and/or omissions may be subject to prosecution and liability pursuant to, but not limited to,

18 U.S.C. §§ 287, 1001, 1031 and 31 U.S.C. §§ 3729-3733 and 3802.
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Certified by Cole, Joseph in SciENcv on 2025-06-28 16:12:19
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Effective 05/20/2024 OMB-3145-0279NSF C&P(O)S

CURRENT AND PENDING (OTHER) SUPPORT INFORMATION

Provide the following information for the Senior/key personnel and other significant contributors.

Follow this format for each person.

*NAME: Jedynak, Bruno Michel

PERSISTENT IDENTIFIER (PID) OF THE SENIOR/KEY PERSON: https://orcid.org/0000-0002-0824-5745

*POSITION TITLE: Professor

*ORGANIZATION AND LOCATION: Portland State University, Portland, Oregon, United States

Proposals/Active Projects

*Proposal/Active Project Title:
Wisconsin Registry for Alzheimer Prevention

(Renewal)

*Status of Support: Current

Proposal/Award Number: R01AG027161

*Source of Support: NIH

*Primary Place of Performance: Portland State University

*Proposal/Active Project Start Date: (MM/YYYY): 05/2023

*Proposal/Active Project End Date: (MM/YYYY): 04/2028

*Total Anticipated Proposal/Project Amount: $485,523

* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2023 1.8

2024 1.8

2025 1.8

2026 1.8

2027 1.8

*Overall Objectives: The Portland State University team will develop statistical modeling methodology for the

time continuous multivariate sequences of biomarkers acquired by WRAP

*Statement of Potential Overlap: Potential overlap between The Longitudinal Course of Imaging Biomarkers

in People At Risk of AD” (PREDICT) and “Wisconsin Registry for Alzheimer's Prevention” or (WRAP

Renewal). In both cases, statistical methods for modeling the progression of Alzheimer’s disease are

developed. In PREDICT, we consider imaging biomarkers, while in WRAP, we focus on non-imaging

biomarkers.
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*Proposal/Active Project Title:
The Longitudinal Course of Imaging Biomarkers in

People At Risk of AD (PREDICT)

*Status of Support: Current

Proposal/Award Number: 5R01AG021155

*Source of Support:
NIH

*Primary Place of Performance: Portland State University

*Proposal/Active Project Start Date: (MM/YYYY): 04/2022

*Proposal/Active Project End Date: (MM/YYYY): 03/2027

*Total Anticipated Proposal/Project Amount: $547,808

* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2023 1.8

2024 1.8

2025 1.8

2026 1.8

2027 1.8

*Overall Objectives: Develop novel statistical methods using imaging for the prediction of Alzheimer's

disease progression.

*Statement of Potential Overlap: Potential overlap between The Longitudinal Course of Imaging Biomarkers

in People At Risk of AD” (PREDICT) and “Wisconsin Registry for Alzheimer's Prevention” or (WRAP

Renewal). In both cases, statistical methods for modeling the progression of Alzheimer’s disease are

developed. In PREDICT, we consider imaging biomarkers, while in WRAP, we focus on non-imaging

biomarkers.

*Proposal/Active Project Title:
Image processing of OCT and OCT-A for longitudinal

analysis in multiple sclerosis

*Status of Support: Current

Proposal/Award Number: R01EY032284

*Source of Support: NIH NEI

*Primary Place of Performance: Portland State University

*Proposal/Active Project Start Date: (MM/YYYY): 03/2021

*Proposal/Active Project End Date: (MM/YYYY): 02/2025

*Total Anticipated Proposal/Project Amount: $491,308
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* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2023 1.95

2024 1.95

*Overall Objectives: Develop statistical methods for understanding the progression of Multiple Sclerosis

*Statement of Potential Overlap: none

*Proposal/Active Project Title:
Collaborative Research: FDT-BioTech: Graph-Based

Stochastic Processes for Biomedical Digital Twins

*Status of Support: Pending

Proposal/Award Number:

*Source of Support: NSF

*Primary Place of Performance: Portland State University

*Proposal/Active Project Start Date: (MM/YYYY): 01/2026

*Proposal/Active Project End Date: (MM/YYYY): 12/2028

*Total Anticipated Proposal/Project Amount: $669,551

* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2026 1

2027 1

2028 1

*Overall Objectives: This proposal develops digital twins based on agent-based models, together with their

large sample Gaussian approximations, organized along a graph structure, with specific applications to cancer

development and tau-pathology evolution in connection with Alzheimer's disease. One of the main focuses is

on the design of training algorithms in the presence of incomplete observations happening at multiple scales,

and on the prediction of individual evolution based on personalized data.

*Statement of Potential Overlap: no overlap

*Proposal/Active Project Title: Information Pursuit for Robotics

*Status of Support: Pending
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Proposal/Award Number:

*Source of Support: NSF

*Primary Place of Performance: Portland State University

*Proposal/Active Project Start Date: (MM/YYYY): 01/2026

*Proposal/Active Project End Date: (MM/YYYY): 12/2026

*Total Anticipated Proposal/Project Amount: $305,000

* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2026 0.5

*Overall Objectives: Develop an information pursuit algorithm for robotic applications

*Statement of Potential Overlap: no overlap

Certification:

I certify that the information provided is current, accurate, and complete. This includes but is not limited to

current, pending, and other support (both foreign and domestic) as defined in 42 U.S.C. § 6605.

I also certify that, at the time of submission, I am not a party to a malign foreign talent recruitment program.

Misrepresentations and/or omissions may be subject to prosecution and liability pursuant to, but not limited to,

18 U.S.C. §§ 287, 1001, 1031 and 31 U.S.C. §§ 3729-3733 and 3802.

Certified by Jedynak, Bruno in SciENcv on 2025-06-21 02:30:10
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Effective 05/20/2024 OMB-3145-0279NSF C&P(O)S

CURRENT AND PENDING (OTHER) SUPPORT INFORMATION

Provide the following information for the Senior/key personnel and other significant contributors.

Follow this format for each person.

*NAME: Miller, Duncan

*POSITION TITLE: CFO

*ORGANIZATION AND LOCATION: Rose City Robotics, Portland, Oregon, United States

Proposals/Active Projects

*Proposal/Active Project Title:

STTR Phase I: Explainable Robotic Motion Planning

in Unstructured Environments Using Information

Pursuit for Critical Mineral Recovery

*Status of Support: Pending

Proposal/Award Number: 261499

*Source of Support: NSF STTR

*Primary Place of Performance: 2130 SW 5th Ave, Suite 245B, Portland, OR 97201

*Proposal/Active Project Start Date: (MM/YYYY): 01/2026

*Proposal/Active Project End Date: (MM/YYYY): 12/2026

*Total Anticipated Proposal/Project Amount: $305,000

* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2026 2.4

*Overall Objectives: Develop an information pursuit algorithm for robotic applications.

*Statement of Potential Overlap: No overlap. This is the proposal currently under consideration for funding.

Certification:

I certify that the information provided is current, accurate, and complete. This includes but is not limited to

current, pending, and other support (both foreign and domestic) as defined in 42 U.S.C. § 6605.

I also certify that, at the time of submission, I am not a party to a malign foreign talent recruitment program.

Misrepresentations and/or omissions may be subject to prosecution and liability pursuant to, but not limited to,

18 U.S.C. §§ 287, 1001, 1031 and 31 U.S.C. §§ 3729-3733 and 3802.

Certified by Miller, Duncan in SciENcv on 2025-06-30 14:39:24

SCV C&P(O)S v.2024-1 Page 1 of 2

Page 68 of 95



SCV C&P(O)S v.2024-1 Page 2 of 2

Page 69 of 95



Effective 05/20/2024 OMB-3145-0279NSF C&P(O)S

CURRENT AND PENDING (OTHER) SUPPORT INFORMATION

Provide the following information for the Senior/key personnel and other significant contributors.

Follow this format for each person.

*NAME: Taylor Rodriguez, Daniel

PERSISTENT IDENTIFIER (PID) OF THE SENIOR/KEY PERSON: https://orcid.org/0000-0002-2959-0281

*POSITION TITLE: Associate Professor

*ORGANIZATION AND LOCATION: Portland State University, Portland, Oregon, United States

Proposals/Active Projects

*Proposal/Active Project Title:
RTG: Portland Program In Computation And Data

Enabled Science

*Status of Support: Current

Proposal/Award Number: 2136228

*Source of Support: NSF DMS

*Primary Place of Performance: Portland State University

*Proposal/Active Project Start Date: (MM/YYYY): 03/2022

*Proposal/Active Project End Date: (MM/YYYY): 03/2027

*Total Anticipated Proposal/Project Amount: $1,969,747

* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2023 0.01

2024 0.01

2025 0.01

2026 0.01

2027 0.01

*Overall Objectives: To produce unique workforce additions with deep knowledge in computational

mathematics and statistics and a broad understanding of current issues in data-driven science. Research in

CADES, being at the intersection of mathematics, statistics, and computing, is characterized by tremendous

intellectual diversity of techniques. Integration across this diversity will result in enhanced research

productivity and uniquely qualified trainees.

*Statement of Potential Overlap: No overlap
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*Proposal/Active Project Title:
Assessment of anomia: improving efficiency and

utility using item response theory

*Status of Support: Current

Proposal/Award Number: R01DC01881301

*Source of Support: NIH/NIDCD

*Primary Place of Performance: Portland State University

*Proposal/Active Project Start Date: (MM/YYYY): 09/2020

*Proposal/Active Project End Date: (MM/YYYY): 08/2025

*Total Anticipated Proposal/Project Amount: $495,089

* Person Months per budget period Devoted to the Proposal/Active Project:

Year Person Months

2021 0.5

2022 0.5

2023 0.5

2024 0.5

2025 1

*Overall Objectives: To produce a powerful and flexible anomia assessment tool with utility for both research

and clinical practice, improving the measurement technology available for assessing naming ability in persons

with aphasia.

*Statement of Potential Overlap: No overlap

Certification:

I certify that the information provided is current, accurate, and complete. This includes but is not limited to

current, pending, and other support (both foreign and domestic) as defined in 42 U.S.C. § 6605.

I also certify that, at the time of submission, I am not a party to a malign foreign talent recruitment program.

Misrepresentations and/or omissions may be subject to prosecution and liability pursuant to, but not limited to,

18 U.S.C. §§ 287, 1001, 1031 and 31 U.S.C. §§ 3729-3733 and 3802.

Certified by Taylor Rodriguez, Daniel in SciENcv on 2025-06-16 21:51:33
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Table 1

1 Your Name: Your Organizational Affiliation(s), last 12 mo Last Active Date

Cole, Joseph Raymond Rose City Robotics, Inc. .

 

Table 2

2 Name: Type of Relationship Optional  (email, Department) Last Active Date

. . . . .

. . . . .

. . . . .

 

Table 3

3 Advisor/Advisee Name: Organizational Affiliation Optional  (email, Department)

G Halas, Naomi Rice University, Houston, TX

T Nordlander, Peter Rice University, Houston, TX

T Kelly, Kevin Rice University, Houston, TX

 

Table 4

4 Name: Organizational Affiliation Optional  (email, Department) Last Active Date

. . . . .

. . . . .

. . . . .

 

Table 5

5 Name: Organizational Affiliation Journal/Collection Last Active Date

. . . . .

. . . . .

. . . . .
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Table 1

1 Your Name: Your Organizational Affiliation(s), last 12 mo Last Active Date

Jedynak, Bruno M Portland State University .

 

Table 2

2 Name: Type of Relationship Optional  (email, Department) Last Active Date

R .

 

Table 3

3 Advisor/Advisee Name: Organizational Affiliation Optional  (email, Department)

G Geman Donald Johns hopkins University geman@jhu.edu

T Rajan Purnima Johns hopkins University purnima@cs.jhu.edu

T Bilgel Murat National Institute of Health murat.bilgel@nih.org

T Variani Ehsan Google, Inc ehsan.variani@google.com

T Sznitman Raphael University of Bern

T Vogelstein Joshua Johns hopkins University

T Vidal Camille GE Healthcare

T Kruti Pandia Intel corp.

T Victor Rielly Portland State University

T Pierre-Emmanuel Poulet INRIA

T Zheng Huicheng Sun Yat-Sen University

 

Table 4

4 Name: Organizational Affiliation Optional  (email, Department) Last Active Date

A Prince Jerry L Johns Hopkins University prince@jhu.edu .

C Johnson Sterling U. of Wisconsin scj@medicine.wisc.edu .

A Resnick Susan National Institute of Aging resnicks@grc.nia.nih.gov .

A Frazier Peter Cornell University pf98@cornell.edu .

A Aaron Carass johns Hopkins University aaron_carass@jhu.edu .

A Daniel Taylor Rodriguez Portland State University dtaylor2@pdx.edu .

A Murat Bilgel NIH NIA murat.bilgel@nih.gov .

A Peter Calabresi Johns Hopkins University pcalabr1@jhmi.edu .

A Shiv Saida johns Hopkins University ssaidha2@jhmi.edu .

A Fu Li Portland State University h8lf@pdx.edu .

A Kamel Lahouel the Translational Genomics Institute .
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A john Lipor Portland State University .

A Jay Gopalakrishnan Portland State University .

A Panayot Vassilevski Portland State University .

A Daniel Taylor Rodriguez Portland State University .

A Dacian Daescu Portland State University .

 

Table 5

5 Name: Organizational Affiliation Journal/Collection Last Active Date

B .

E .
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Table 1

1 Your Name: Your Organizational Affiliation(s), last 12 mo Last Active Date

Duncan Miller Rose City Robotics .

Metro Region Innovation Hub 06/30/25

Portland State University (Mentor) 06/30/25

Invent Oregon (Judge) 06/30/25

E8 Angel Investment Fund .

 

Table 2

2 Name: Type of Relationship Optional  (email, Department) Last Active Date

. . . . .

. . . . .

. . . . .

 

Table 3

3 Advisor/Advisee Name: Organizational Affiliation Optional  (email, Department)

. . . .

. . . .

. . . .

 

Table 4

4 Name: Organizational Affiliation Optional  (email, Department) Last Active Date

. . . . .

. . . . .

. . . . .

 

Table 5

5 Name: Organizational Affiliation Journal/Collection Last Active Date

. . . . .

. . . . .

. . . . .
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Table 1

1 Your Name: Your Organizational Affiliation(s), last 12 mo Last Active Date

Taylor-Rodriguez, Daniel Portland State University 02/01/21

 

Table 2

2 Name: Type of Relationship Optional  (email, Department) Last Active Date

R .

 

Table 3

3 Advisor/Advisee Name: Organizational Affiliation Optional  (email, Department)

G Young, Linda National Agricultural Statistical Service Linda.J.Young@usda.gov

G Bliznyuk, Nikolay University of Florida nblinyuk@uf.edu

T Jacob Schultz Portland State University jschultz@pdx.edu

T Ashlynn Crisp Portland State University acrisp@pdx.edu

T Simon Lee Portland State University soonmlee@pdx.edu

 

Table 4

4 Name: Organizational Affiliation Optional  (email, Department) Last Active Date

A Womack, Andrew J Rice University 06/20/25

A Fuentes, Claudio Oregon State University 06/20/25

A Finley, Andrew Michigan State University 06/20/25

A Gutierrez, Luis Pontificia Universidad Catolica de Chile 01/01/24

A Pereira, Luz A Universidad del Valle 01/01/24

A Mena, Ramses H Universidad Autonoma de Mexico 01/01/24

C Fergadiotis, Gerasimos Portland State University 06/20/25

A Hula, William VA Pittsburgh Healthcare System 06/20/25

A Holz, Andres Portland State University 06/20/25

A de Rivera, Catherine Portland State University 12/01/23

A Bliss-Ketchum, Leslie Samara Group LLC 12/01/23

A Lafrenz, Martin Portland State University 12/01/23

A Wheat, Rachel Oregon Department of Fisheries and Wildlife 12/01/23

C Cole, Joseph Rosecity Robotics 06/20/25

C Miller, Duncan Rosecity Robotics 06/20/25

C Jedynak, Bruno Portland State University 06/20/25

C Gopalakrishnan, Jay Portland State University 06/20/25
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C Vasilevsky, Panayot Portland State University 06/20/25

C Orvall, Jeff Portland State University 06/20/25

C Nguyen, Nam Portland State University 01/01/24

C Daescu, Dacian Portland State University 01/01/24

C Chang, Heejun Portland State University 08/01/24

A Holz, Andres Portland State University 06/20/25

A Orvall, Jeff Portland State University 01/01/24

 

Table 5

5 Name: Organizational Affiliation Journal/Collection Last Active Date

B .

E .
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Synergistic Activities - Joseph Cole

1 Training and Mentoring
I mentored two high school seniors as interns at Rose City Robotics during the spring of 2025,
and currently I have four new interns for this summer. I helped them learn about simultaneous
localization and mapping (SLAM) using the open source Robotis TurtleBot, as well as inverse
kinematics using the OpenManipulator-X arm. We also have an ALOHA robot that one student
is using to learn about the data collection process for human imitation learning, as well as the
procedure to train transformer neural networks.

2 Curriculum Development
Rose City Robotics is currently developing a curriculum of robotics education courses to help inter-
ested high school students develop a portfolio of robotics projects they can showcase. Toward that
end, I was accepted into the Portland State University Educational Leadership graduate certificate
program beginning in the fall of 2025. My goal in joining this program is to deepen my under-
standing of adult developmental theory and to refine our curriculum design practices using proven
pedagogical frameworks.

3 Software Development
In my last role, at the medical device startup YorLabs, I was the lead developer responsible for
software architecture of a new cardiac ultrasound machine based on the NVIDIA Jetson ARM
system-on-module. I developed beamforming and image processing algorithms to implement B, color
doppler, and pulse wave doppler ultrasound modes. All of the ultrasound data processing occurs in
real time on the GPU, giving me extensive experience developing CUDA kernels to parallelize time
critical code. I also performed system integration of work products from experts on image quality,
front-end user interface, and FPGA/hardware. This role required that I define and verify user
requirements including frame rate and pipeline latency, and I had to ensure the system architecture
could perform as expected. Ultimately, I demonstrated system performance both in lab and during
two animal trials which led to successful closing of Series B and C investment rounds.

Prior to that, at Applied Materials, I designed algorithms in Matlab for the UVision UV mi-
croscope and SEMVision electron microscope platforms. These microscopes used high speed image
processing and statistical algorithms for wafer inspection and defect review of semiconductor manu-
facturing process steps. I analyzed algorithmic gaps at a key customer site to focus company R&D
e!orts, earning Employee of the Quarter award (Q3, 2012). This role required daily frontline in-
teractions with the customer that over time built relationships to fuel future tool sales. I improved
software quality by testing early prototype versions of new algorithm features (e.g. subframe reg-
istration, 3D height measurements, process noise filters, etc.) on customer data, and I designed an
edge segmentation algorithm for a new product line (Discrete Measurement Server). One of my
algorithms, an image enhancement backlight algorithm, was developed on a compressed timeline to
secure $6 million in SEMVision tool sales.

These roles, among others, demonstrate my proven capacity to lead an e!ort to implement and
bring to market a revolutionary artificial intelligence algorithm.
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Synergistic activities - Duncan Miller

1 Mentoring and Outreach Programs

At Portland State University, I serve as a mentor for student founders and entrepreneurs through
the PSU Business Accelerator and Center for Entrepreneurship. I support a range of student-led
ventures, o!ering guidance in product development, market analysis, and commercialization across
initiatives like InventOR where I serve as both a judge and mentor. I also host meetups and
workshops on robotics and artificial intelligence. As a University Ambassador for NVIDIA’s Deep
Learning Institute, I help students access cutting-edge AI curriculum and resources to support their
academic and entrepreneurial goals. These e!orts contribute to expanding the STEM pipeline and
increasing participation in technology innovation among underrepresented groups.

2 Community Liaison for Regional Innovation

At the Metro Region Innovation Hub, I work to increase entrepreneurial access and innovation sup-
port for startup founders. The Innovation Hub is funded by Business Oregon and designed to bridge
resource gaps across the innovation ecosystem. My role includes outreach to local entrepreneurs,
and connecting them with education, mentoring, and capital programs. This work ensures that the
benefits of scientific and engineering advancement are tied directly to regional economic resilience.

3 STEM Education and Robotics Training

I founded the Robotics Collaborative in Portland to promote access to hands-on robotics training.
I also serve as a coach and mentor for a local FIRST Robotics FTC team, guiding high school
students through the engineering design process, coding challenges, and competitive robotics events.
Through these programs, I students build their confidence and capabilities in mechanical design,
embedded systems, and artificial intelligence. These e!orts directly address the national imperative
to strengthen STEM education and cultivate the next generation of technical leaders.

4 Entrepreneurship and Technology Commercialization

Over the past 20 years, I have founded and led 4 technology startups in across energy, education,
and software. Notably, I co-founded HeatSpring, an online education platform that served over
100,000 energy professionals and generated millions in revenue through bootstrapped growth. I also
developed Shiro, a prompt engineering and testing platform for AI developers, which I exited in 2024.
In 2025, I merged my AI-driven solar training platform Waivolt into Rose City Robotics. Across
these ventures, I have lead product innovation, commercialization, and ecosystem development in
to promote prosperity and leadership.

5 Innovation Network and Strategic Collaboration

I am a co-organizer of the Pacific Northwest Battery Collaborative, a consortium advancing battery
innovation, manufacturing and recovery solutions. I also serve as a Limited Partner at E8 Angels, an
investment network focused on early-stage ventures across North America. These roles allow me to
support strategic resource repatriation and help mobilize investment into domestic critical materials
recovery technologies. I also collaborate with partners, including Polaris Battery Labs and Loupe
Robotics, and Oak Ridge National Laboratory to align research, training, and commercialization
goals across the battery supply chain.
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Synergistic activities - Bruno Jedynak

1 The CADES lab
Together with my colleague, Dr. Daniel Taylor-Rodriguez, I created the Computation and Data-

Enabled Science (CADES) Consulting Lab in 2022, which was established as part of the NSF

Research and Training Grant DMS-2136228. The lab o!ers consulting services to regional scientists.

In doing so, it provides hands-on opportunities for trainees to experience the entire data analytics

pipeline with real-world data and to develop the skills needed to connect theory with practice.

Researchers from any discipline are welcome to consult on what computational techniques, data

handling methods, or quantitative tools are best suited for their scientific pursuits.

To teach students how to communicate with clients e!ectively, student-led interactions were

emphasized, rather than faculty or Lab sta! orchestrating student-client interactions. Students

organize and conduct interviews with clients, present weekly project updates, draft final consulting

reports, and deliver a final presentation to their clients to debrief them on the results of their

analysis.

Teams of students are composed of students from all academic levels. PhD students act as

team leaders for their MSc and BSc classmates, while every team is under the guidance of a faculty.

Teams are carefully chosen by the CADES Lab lead team, to balance student strengths (determined

through an academic and coding background survey) and academic exposure to varying techniques

and coursework.

2 Curriculum creation
Statistical Methods in Imaging. Created at Johns Hopkins University in Spring 2006. This course

presented various statistical aspects of computational imaging. It introduced machine learning

techniques for computer vision questions.

Statistical Learning. Created at Portland State University in 2018, this year-long sequence of three

courses was focused on the probabilistic aspects of machine learning.

Kernel methods. Created in 2022 at Portland State University, this year-long sequence of three

courses was focused on the presentation of kernel methods.
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Synergistic activities - Daniel Taylor Rodriguez

1 TRAINING AND MENTORING

1.1 The CADES Consulting Lab. My colleague Bruno Jedynak and I established the Computa-

tion and Data-Enabled Science (CADES) Consulting Lab in 2022 under the NSF Research and

Training Grant DMS-2136228. The lab o!ers consulting to local and regional scientists, providing

students hands-on experience with complex real-world data to bridge theory and practice. Each

term, we solicit project proposals from academic, government, and business partners, emphasizing

computational methods, data management, and quantitative tools. We prioritize e!ective consulting

communication (often overlooked in quantitative programs) through initial training sessions, after

which students independently manage client interactions. Students conduct interviews, provide

weekly updates, draft reports, and deliver final presentations. Teams include PhD, MSc, and BSc

students to mirror real-world collaborative environments. PhD students typically lead, supported

closely by faculty and sta!.

1.2 PSU EAGLES Faculty Mentor. EAGLES is an NSF funded program designed to improve

retention in STEM by supporting low-income undergraduate STEM students financially and with

academic support/mentoring (2025-2027). I am currently mentor to three undergraduate students

working towards a STEM degree (two in Computer Science and one in Chemistry) coming from low

income backgrounds.

2 CURRICULAR DEVELOPMENT

2.1 Modernizing PSU’s MS Stats program. As part of my commitment to advancing data sci-

ence education, I co-led, alongside my colleague Bruno Jedynak, the comprehensive update of our

department’s MS Statistics program to include a Data Science emphasis. This enhanced program

integrates modern computational tools, data management strategies, and advanced quantitative

methods, aligning closely with current industry and research demands. Following successful ap-

proval, the revised MS Statistics + Data Science program is set to launch this upcoming Fall,

significantly expanding our curriculum’s relevance and appeal.

2.2 Creation of the BSc in Data Science at PSU. I played a leading role in establishing the BSc in

Data Science program at Portland State University during 2019 and 2020. Specifically, I proposed

and developed the statistical curriculum and designed several core requirements, ensuring align-

ment with industry standards and emerging research trends. This foundational work contributed

significantly to the successful launch and ongoing development of the program, preparing students

e!ectively for careers in data science. This program has been widely successful, and is currently one

of the fastest growing programs in the University.

3 SOFTWARE DEVELOPMENT

Developed part of the statistical methodology and code built into the popular R package GJAM. R

Software implementation of di!erent Bayesian methods published in manuscripts: The software can

be downloaded here: HCSelection https://github.com/dantaylor60/HCBayesianSelection.git and

AutoBPFit https://github.com/dantaylor60/AutoBPFit.git
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Data Management and Sharing Plan

All data generated in this NSF STTR Phase I project is considered proprietary.
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Mentoring Plan

This comprehensive mentoring initiative is designed to support an undergraduate student, a

graduate student, and a Senior Research Assistant II at Portland State University (PSU). The

program aims to foster professional development through a range of activities, with progress evalu-

ated via routine meetings with faculty advisors and an annual written report outlining individual

advancement.

Program Orientation:

At the start, each participant will meet individually with project leads and attend group sessions

with the broader research team. These meetings will clarify project goals, introduce available

lab resources, and set expectations. Key areas of focus include promoting independent research,

encouraging professional collaboration with team members, emphasizing timely and high-quality

dissemination of results, and stressing proper documentation of methodologies and findings.

Scientific Communication and Professional Exposure:

Mentees will develop and present their research findings, often in collaboration with faculty investiga-

tors who will assist with writing, editing, and organizing manuscripts and conference presentations.

Opportunities to share research will include weekly group meetings and national or international

conferences, for which travel support is provided.

Career Development and Counseling:

The program o!ers guidance tailored to both short-term and long-term career planning. Participants

will explore various career paths, including roles in academia, industry, and government. Mentors

will facilitate engagement with the broader scientific community through conferences, technical

meetings, and workshops, expanding professional networks and career prospects.

Development of Mentorship Skills:

Graduate students will mentor undergraduate researchers through summer internships at Portland

State University. These internships are made available through the NSF Research and Training

grant in Computation and Data Enabled Science. Faculty mentors will conduct bi-annual meetings

to assess project progress, set research goals, and support career planning.

Ethics and Professional Conduct:

Ethical research practices and professionalism are integral to the training process, modeled through

interactions with senior researchers. Participants will be encouraged to engage in peer review,

help organize academic events, and serve the scientific community by joining relevant professional

organizations.

Supplemental Mentoring Opportunities:

Additional support includes participation in specialized career development workshops, such as

those focused on navigating academic job searches. Participants will give regular research updates

to the group and receive constructive feedback. Opportunities will also be available in teaching

undergraduate-level courses
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Draft 
 
Small Business Technology Transfer (STTR) Program Allocation Of Rights In Intellectual Property 
And Rights To Carry Out Follow-On Research, Development, Or Commercialization 
 
This Agreement between _____________________________, a small business concern 
organized as a______________________under the laws of _________________ and having a 
principal place of business at__________________________________________________ 
_________________________________, ("SBC") and 
________________________________________, a research institution having a principal place 
of business at ________________________________________, ("RI") is entered into for the 
purpose of allocating between the parties certain rights relating to an STTR project to be carried 
out by SBC and RI (hereinafter referred to as the "PARTIES") under an STTR funding agreement 
that may be awarded by the National Science Foundation (NSF) to SBC to fund a proposal 
entitled "___________________________________________________ 
"submitted, or to be submitted, to NSF by SBC on or about _______________, 20___. 
 
1. Applicability of this Agreement 
 
(a) This Agreement shall be applicable only to matters relating to the STTR project referred to in 
the preamble above. 
 
(b) If a funding agreement for an STTR project is awarded to an SBC based upon the STTR 
proposal referred to in the preamble above, SBC will promptly provide a copy of such funding 
agreement to RI, and SBC will make a subaward to RI in accordance with the funding 
agreement, the proposal, and this Agreement. If the terms of such funding agreement appear 
to be inconsistent with the provisions of this Agreement, the Parties will attempt in good faith 
to resolve any such inconsistencies. However, if such resolution is not achieved within a 
reasonable period, SBC shall not be obligated to award nor RI to accept the subaward. If a 
subaward is made by SBC and accepted by RI, this Agreement shall not be applicable to 
contradict the terms of such subaward or of the funding agreement awarded by NSF to SBC 
except on the grounds of fraud, misrepresentation, or mistake, but shall be considered to 
resolve ambiguities in the terms of the subaward. 
 
(c) The provisions of this Agreement shall apply to any and all consultants, subcontractors, 
independent contractors, or other individuals employed by SBC or RI for the purposes of this 
STTR project. 
 
2. Background Intellectual Property 
 
(a) "Background Intellectual Property" means property and the legal right therein of either or 
both parties developed before or independent of this Agreement including inventions, patent 

Rose City Robotics, Inc.
C Corporation Oregon

11060 NW Copeland St., Portland, OR 97229

Portland State University

1825 SW Broadway, Portland, OR 97201

Explainable Robotic Motion Planning Using Information Pursuit for Critical Mineral Recovery
July 2 25
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applications, patents, copyrights, trademarks, mask works, trade secrets and any information 
embodying proprietary data such as technical data and computer software. 
 
(b) This Agreement shall not be construed as implying that either party hereto shall have the 
right to use Background Intellectual Property of the other in connection with this STTR project 
except as otherwise provided hereunder. 
 
(1) The following Background Intellectual Property of SBC may be used nonexclusively and, 
except as noted, without compensation by RI in connection with research or development 
activities for this STTR project (if "none" so 
state):____________________________________________: 
 
(2) The following Background Intellectual Property of RI may be used nonexclusively and, 
except as noted, without compensation by SBC in connection with research or development 
activities for this STTR project (if "none" so state): 
___________________________________________: 
 
(3) The following Background Intellectual Property of RI may be used by SBC nonexclusively in 
connection with commercialization of the results of this STTR project, to the extent that such 
use is reasonably necessary for practical, efficient and competitive commercialization of such 
results but not for commercialization independent of the commercialization of such results 
upon the condition that SBC pay to RI, in addition to any other royalty including any royalty 
specified in the following list, a royalty of __% of net sales or leases made by or under the 
authority of SBC of any product or service that embodies, or the manufacture or normal use of 
which entails the use of, all or any part of such Background Intellectual Property (if "none" so 
state): __________________________________________________. 
 
3. Project Intellectual Property 
 
(a) "Project Intellectual Property" means the legal rights relating to inventions (including 
Subject Inventions as defined in 37 CFR &sect; 401), patent applications, patents, copyrights, 
trademarks, mask works, trade secrets and any other legally protectable information, including 
computer software, first made or generated during the performance of this STTR Agreement. 
 
(b) Except as otherwise provided herein, ownership of Project Intellectual Property shall vest in 
the party whose personnel conceived the subject matter or first actually reduced the subject 
matter to practice, and such party may perfect legal protection therein in its own name and at 
its own expense. Jointly made or generated Project Intellectual Property shall be jointly owned 
by the Parties unless otherwise agreed in writing. The SBC shall have the first option to perfect 
the rights in jointly made or generated Project Intellectual Property unless otherwise agreed in 
writing. 
 

none

none

none
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(1) The ownership, including rights to any revenues and profits, resulting from any product, 
process, or other innovation or invention based on the cooperative shall be allocated between 
the SBC and the RI as follows: 
 
SBC Percent: ________ RI Percent:__________ 
 
(2) Expenses and other liabilities associated with the development and marketing of any 
product, process, or other innovation or invention shall be allocated as follows: the SBC will be 
responsible for ___ percent and the RI will be responsible for ___ percent. 
 
(c) The Parties agree to disclose to each other, in writing, each and every Subject Invention, 
which may be patentable or otherwise protectable under the United States patent laws in Title 
35, United States Code. The Parties acknowledge that they will disclose Subject Inventions to 
each other and the awarding agency within ______ months after their respective inventor(s) 
first disclose the invention in writing to the person(s) responsible for patent matters of the 
disclosing Party. All written disclosures of such inventions shall contain sufficient detail of the 
invention, identification of any statutory bars, and shall be marked confidential, in accordance 
with 35 U.S.C. &sect;205. 
 
(d) Each party hereto may use Project Intellectual Property of the other nonexclusively and 
without compensation in connection with research or development activities for this STTR 
project, including inclusion in STTR project reports to the NSF and proposals to the NSF for 
continued funding of this STTR project through additional phases. 
 
(e) In addition to the Government's rights under the Patent Rights clause of 37 CFR &sect; 
401.14, the Parties agree that the Government shall have an irrevocable, royalty free, 
nonexclusive license for any governmental purpose in any Project Intellectual Property. 
 
(f) SBC will have an option to commercialize the Project Intellectual Property of RI, subject to 
any rights of the Government therein, as follows: 
 
(1) Where Project Intellectual Property of RI is a potentially patentable invention, SBC will have 
an exclusive option for a license to such invention, for an initial option period of __ months 
after such invention has been reported to SBC. SBC may, at its election and subject to the 
patent expense reimbursement provisions of this section, extend such option for an additional 
__ months by giving written notice of such election to RI prior to the expiration of the initial 
option period. During the period of such option following notice by SBC of election to extend, RI 
will pursue and maintain any patent protection for the invention requested in writing by SBC 
and, except with the written consent of SBC or upon the failure of SBC to reimburse patenting 
expenses as required under this section, will not voluntarily discontinue the pursuit and 
maintenance of any United States patent protection for the invention initiated by RI or of any 
patent protection requested by SBC. For any invention for which SBC gives notice of its election 
to extend the option, SBC will, within ___ days after invoice, reimburse RI for the expenses 
incurred by RI prior to expiration or termination of the option period in pursuing and 

50 50

50 50

2

 24

 24

 45
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maintaining (i) any United States patent protection initiated by RI and (ii) any patent protection 
requested by SBC. SBC may terminate such option at will by giving written notice to RI, in which 
case further accrual of reimbursable patenting expenses hereunder, other than prior 
commitments not practically revocable, will cease upon RI's receipt of such notice. At any time 
prior to the expiration or termination of an option, SBC may exercise such option by giving 
written notice to RI, whereupon the parties will promptly and in good faith enter into 
negotiations for a license under RI's patent rights in the invention for SBC to make, use and/or 
sell products and/or services that embody, or the development, manufacture and/or use of 
which involves employment of, the invention. The terms of such license will include: (i) 
payment of reasonable royalties to RI on sales of products or services which embody, or the 
development, manufacture or use of which involves employment of, the invention; (ii) 
reimbursement by SBC of expenses incurred by RI in seeking and maintaining patent protection 
for the invention in countries covered by the license (which reimbursement, as well as any such 
patent expenses incurred directly by SBC with RI's authorization, insofar as deriving from RI's 
interest in such invention, may be offset in full against up to of accrued royalties in excess of 
any minimum royalties due RI); and, in the case of an exclusive license, (iii) reasonable 
commercialization milestones and/or minimum royalties.  
 
(2) Where Project Intellectual Property of RI is other than a potentially patentable invention, 
SBC will have an exclusive option for a license, for an option period extending until months 
following completion of RI's performance of that phase of this STTR project in which such 
Project Intellectual Property of RI was developed by RI. SBC may exercise such option by giving 
written notice to RI, whereupon the parties will promptly and in good faith enter into 
negotiations for a license under RI's interest in the subject matter for SBC to make, use and/or 
sell products or services which embody, or the development, manufacture and/or use of which 
involve employment of, such Project Intellectual Property of RI. The terms of such license will 
include: (i) payment of reasonable royalties to RI on sales of products or services that embody, 
or the development, manufacture or use of which involves employment of, the Project 
Intellectual Property of RI and, in the case of an exclusive license, (ii) reasonable 
commercialization milestones and/or minimum royalties. 
 
(3) Where more than one royalty might otherwise be due in respect of any unit of product or 
service under a license pursuant to this Agreement, the parties shall in good faith negotiate to 
ameliorate any effect thereof that would threaten the commercial viability of the affected 
products or services by providing in such license(s) for a reasonable discount or cap on total 
royalties due in respect of any such unit. 
 
4. Follow-on Research or Development 
 
All follow-on work, including any licenses, contracts, subcontracts, sublicenses or arrangements 
of any type, shall contain appropriate provisions to implement the Project Intellectual Property 
rights provisions of this agreement and insure that the Parties and the Government obtain and 
retain such rights granted herein in all future resulting research, development, or 
commercialization work. 
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5. Confidentiality/Publication 
 
(a) Background Intellectual Property and Project Intellectual Property of a party, as well as 
other proprietary or confidential information of a party, disclosed by that party to the other in 
connection with this STTR project shall be received and held in confidence by the receiving 
party and, except with the consent of the disclosing party or as permitted under this 
Agreement, neither used by the receiving party nor disclosed by the receiving party to others, 
provided that the receiving party has notice that such information is regarded by the disclosing 
party as proprietary or confidential. However, these confidentiality obligations shall not apply 
to use or disclosure by the receiving party after such information is or becomes known to the 
public without breach of this provision or is or becomes known to the receiving party from a 
source reasonably believed to be independent of the disclosing party or is developed by or for 
the receiving party independently of its disclosure by the disclosing party. 
 
(b) Subject to the terms of paragraph (a) above, either party may publish its results from this 
STTR project. However, the publishing party will negotiate the right of refusal with the other 
party with respect to a proposed publication, as well as a day period in which to review 
proposed publications and submit comments, which will be given full consideration before 
publication. Furthermore, upon request of the reviewing party, publication will be deferred for 
up to additional days for preparation and filing of a patent application which the reviewing 
party has the right to file or to have filed at its request by the publishing party. 
 
6. Liability 
 
(a) Each party disclaims all warranties running to the other or through the other to third parties, 
whether express or implied, including without limitation warranties of merchantability, fitness 
for a particular purpose, and freedom from infringement, as to any information, result, design, 
prototype, product or process deriving directly or indirectly and in whole or part from such 
party in connection with this STTR project. 
 
(b) SBC will indemnify and hold harmless RI with regard to any claims arising in connection with 
commercialization of the results of this STTR project by or under the authority of SBC. The 
PARTIES will indemnify and hold harmless the Government with regard to any claims arising in 
connection with commercialization of the results of this STTR project. 
 
7. Termination 
 
(a) This agreement may be terminated by either Party upon ___ days written notice to the 
other Party. This agreement may also be terminated by either Party in the event of the failure 
of the other Party to comply with the terms of this agreement. 
 
(b) In the event of termination by either Party, each Party shall be responsible for its share of 
the costs incurred through the effective date of termination, as well as its share of the costs 

 14
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incurred after the effective date of termination, and which are related to the termination. The 
confidentiality, use, and/or non-disclosure obligations of this agreement shall survive any 
termination of this agreement. 
 
AGREED TO AND ACCEPTED 
 
Small Business Concern 
 
By: ________________________________________________ 
 
Date: _____________ 
 
Print name: _________________________________________ 
 
Title: ______________________________________________ 
 
Research Institution 
 
By: ________________________________________________ 
 
Date: ____________ 
 
Print name: _________________________________________ 
 
Title: ______________________________________________ 

Joseph R. Cole

President & CEO
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Potential Impacts on Tribal Nations

Data Not Available
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June 25, 2025 

Joseph Cole 
Co-founder / CEO Rose City Robotics 
2130 SW 5th Ave #245B 
Portland, OR 97201 
joe@rosecityrobotics.com 

Reference: NSF 24-579: NSF Small Business Innovation Research /Small Business Technology Transfer 
Phase I Programs 

Dear Joseph: 

This letter confirms that the appropriate program and administrative personnel at Portland State University have 
reviewed the above referenced Statement of Work and budget and are committed to enter into an agreement with 
Rose City Robotics for the performance period of 01/05/2026 to 12/11/2026. The work to be performed by PSU 
does not include human or animal subjects.  

The PSU Principal Investigator on this proposal is Bruno Jedynak for the project entitled: “Information pursuit for 
robotics.” The PSU budget and scope of work are provided as separate enclosures to this letter. The estimated cost 
of the proposed subcontract will not exceed $165,048 and includes appropriate direct and indirect costs. 

Furthermore, by submission of this commitment letter PSU and its Principal Investigator (PI) certify that the 
information submitted within the application is true, complete, and accurate to the best of PSU’s knowledge. We 
certify Portland State University is in compliance with all assurances and certifications referenced in the application 
process and has institutional policies and procedures in place to ensure compliance with conflict of interest issues, as 
well as other applicable federal and state laws, rules and regulations. 

Should an award be made to Portland State University, please forward to contract to the email awards@pdx.edu. If 
you have any questions, please contact the undersigned at spa_proposals@pdx.edu or (503) 725-9900. 

Sincerely, 

Addy Bareiss, Proposal Manager 
Authorized Organization Official 

Enclosed: Budget, Budget Justification, Scope of Work 

Research & Graduate Studies 
Sponsored Projects Administration 

Post Office Box 751 
Mail Code SPA 
Portland, OR 97207-0751 
503-725-9900
www.pdx.edu/research
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STATEMENT OF WORK  
 
Subaward Site: Portland State University (PSU)  
 
The work proposed by the PSU team aims to develop a vision-based Information-Pursuit 
algorithm that accurately identifies the location of bolts on electric vehicle (EV) batteries, the first 
step in the EV battery disassembly process. The successful formulation of this approach will 
serve as proof of concept, supporting the submission of an NSF SBIT/STTR Phase II proposal 
as a continuation of this project. 
 
As site PI, Jedynak will complete the following tasks:  
 

● Have primary responsibility for all activities related to sub-award management. 
● Serve as liaison between PSU and Rose City Robotics. 
● Recruit and hire a research associate and students who participate in the project. 
● Share with Co-PI Taylor-Rodriguez the primary responsibility for ensuring the validity of 

the research conducted. 
● Coordinate regular meetings with Rose City Robotics. 
● Participate in weekly technical discussions. 
● Contribute to the methodological development proposed. 
● Contribute to the manuscripts resulting from the proposed work. 
● Attend national conferences to disseminate the strategies that have been formulated. 

 
As site Co-PI, Taylor-Rodriguez will  
 

● Lead the methodological development of the project, including:  
○ Formulation of a likelihood-free strategy to estimate the distributions required to 

power the information pursuit algorithm. 
○ Designing an approach to estimate mutual information from samples. 
○ Develop the guiding principles for obtaining the embeddings that yield the latent 

representation of the visual input received by the robotic arm. 
 

● Lead and supervise the research associate and students during the software 
development, training, and testing stages of the project. 

● Share with PI Jedynak the primary responsibility for ensuring the validity of the research 
conducted. 

● Participate in regular meetings with Rose City Robotics. 
● Coordinate and lead weekly technical discussions. 
● Contribute to the manuscripts resulting from the proposed work. 
● Attend national conferences to disseminate the strategies that have been formulated. 
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To Whom It May Concern: 

If the proposal submitted by Dr. Joseph Cole entitled “STTR Phase I: Explainable Robotic 
Motion Planning in Unstructured Environments Using Information Pursuit for Critical Mineral 
Recovery” is selected for funding by NSF, it is my intent to collaborate and/or commit resources 
as detailed in the Project Description or the Facilities, Equipment and Other Resources section 
of the proposal. 

Days Committed: 10 

Daily Rate: $1000 

Total: $10000 

Sincerely, 

 

Dakota S Pellegrino 

Principal 

Callida Solutions LLC 

Dakota.pellegrino@callida.solutions  

16213 SW Autumn Dr. Beaverton, OR 97007  

+1(971)-297-5290 
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List of Suggested Reviewers

Data Not Available
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List of Reviewers Not to Include

Data Not Available
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